精英家教网 > 高中数学 > 题目详情
19.在直角△ABC中,$∠A=\frac{π}{2}$,AB=1,AC=2,M是△ABC内一点,且$AM=\frac{1}{2}$,若$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则λ+2μ的最大值$\frac{\sqrt{2}}{2}$.

分析 建立平面直角坐标系,则A(0,0),B(0,1),C(2,0),M($\frac{1}{2}cosθ$,$\frac{1}{2}sinθ$),(0<θ<$\frac{π}{2}$),由已知可得$λ=\frac{1}{2}sinθ,2μ=\frac{1}{2}cosθ$,则λ+2μ=$\frac{1}{2}(sinθ+cosθ)=\frac{\sqrt{2}}{2}sin(θ+\frac{π}{4})$,即可求解.

解答 解:如图建立平面直角坐标系,则A(0,0),B(0,1),C(2,0)
M($\frac{1}{2}cosθ$,$\frac{1}{2}sinθ$)(0<θ<$\frac{π}{2}$),
∵$\overrightarrow{AM}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,∴($(\frac{1}{2}cosθ,\frac{1}{2}sinθ)=λ(0,1)+μ(2,0)$.
∴$λ=\frac{1}{2}sinθ,2μ=\frac{1}{2}cosθ$,
则λ+2μ=$\frac{1}{2}(sinθ+cosθ)=\frac{\sqrt{2}}{2}sin(θ+\frac{π}{4})$,
∴当θ=$\frac{π}{4}$时,λ+2μ最大值为$\frac{\sqrt{2}}{2}$,
故答案为:$\frac{\sqrt{2}}{2}$

点评 本题考查向量的线性运算,平面向量的基本定理及其意义,建立坐标系,利用坐标运算,是一种常见的处理技巧,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,M是边BC上的点,且tan∠BAM=$\frac{1}{3}$,tan∠AMC=-$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2(x-1),x≤1}\\{{x}^{2}-4x+3,x>1}\end{array}\right.$,则函数y=f(x)-2lnx的零点个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:y2=4x的焦点为F,点A(0,-$\sqrt{3}$),若线段FA与抛物线C相交于点M,则|MF|=(  )
A.$\frac{4}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个不透明的袋子中装有大小相同的12个黑球,4个白球,每次有放回的任意摸取一个球,共摸取3次,若用X表示取到白球的次数,则X的数学期望E(X)与方差D(X)分别为$\frac{3}{4}$,$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图同心圆中,大、小圆的半径分别为2和1,点P在大圆上,PA与小圆相切于点A,Q为小圆上的点,则$\overrightarrow{PA}•\overrightarrow{PQ}$的取值范围是[3-$\sqrt{3}$,3+$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|1-2x|-|1+x|.
(1)解不等式f(x)≥4;
(2)若关于x的不等式a2+2a+|1+x|<f(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{x}{{e}^{|x|}}$的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如表:
愿意被外派不愿意被外派合计
70后202040
80后402060
合计6040100
(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的70后、80后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x;80后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y,求x<y的概率.
参考数据:
P(K2>k)0.150.100.050.0250.0100.005
k2.0722.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d).

查看答案和解析>>

同步练习册答案