精英家教网 > 高中数学 > 题目详情
5.已知a,b,c∈(0,+∞),且a+b+c=1,求证:
(1)($\frac{1}{a}$-1)•($\frac{1}{b}$-1)•($\frac{1}{c}$-1)≥8;  
  (2)$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$.

分析 利用基本不等式,即可证明结论.

解答 证明:(1)∵a,b,c∈(0,+∞),∴a+b≥2$\sqrt{ab}$,b+c≥2$\sqrt{bc}$,c+a≥2$\sqrt{ca}$,
($\frac{1}{a}$-1)•($\frac{1}{b}$-1)•($\frac{1}{c}$-1)=$\frac{b+c}{a}•\frac{a+c}{b}•\frac{a+b}{c}$≥$\frac{2\sqrt{bc}•2\sqrt{ac}•2\sqrt{ab}}{abc}$=8.…(5分)
(2)∵a,b,c∈(0,+∞),∴a+b≥2$\sqrt{ab}$,b+c≥2$\sqrt{bc}$,c+a≥2$\sqrt{ca}$,
2(a+b+c)≥2$\sqrt{ab}$+2$\sqrt{bc}$+2$\sqrt{ca}$,
两边同加a+b+c得3(a+b+c)≥a+b+c+2$\sqrt{ab}$+2$\sqrt{bc}$+2$\sqrt{ca}$=($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2
又a+b+c=1,∴($\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$)2≤3,
∴$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤$\sqrt{3}$.…(10分)

点评 本题考查不等式的证明,考查基本不等式的运用,正确运用基本不等式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若全集 U={x|-2≤x≤2},则集合 A={x|-2≤x≤0}的补集∁U A 为(  )
A.{x|0<x<2}B.{x|0≤x<2}C.{x|0<x≤2}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合M={x∈R|y=lg(4-x2)},则M∩N*=(  )
A.(-1,1]B.{1}C.(0,2)D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+b,且f(3)=7,f(5)=-1,那么f(0)=19.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=$\sqrt{x-1}$+$\frac{1}{x-1}$的定义域为{x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列四个命题:
①d<0;②S11>0;③使Sn>0的最大n值为12;④数列{Sn}中的最大项为S11
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法错误的是(  )
A.命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
B.如果命题“?p”与命题“p∨q”都是真命题,则命题q一定是真命题
C.若命题:?x0∈R,x02-x0+1<0,则?p:?x∈R,x2-x+1≥0
D.“sinθ=$\frac{1}{2}$”是“θ=$\frac{π}{6}$”的充分必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a是实数,f(x)=a-$\frac{1}{{2}^{x}+1}$(x∈R)
(1)如果f(x)为奇函数,试确定a的值.
(2)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a>0,b>0,若1是2a与2b的等差中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案