精英家教网 > 高中数学 > 题目详情
(本小题15分)已知抛物线,过点的直线交抛物线两点,且
(1)求抛物线的方程;
(2)过点轴的平行线与直线相交于点,若是等腰三角形,求直线的方程.
(15分)(1)设
……………………(
,所以
抛物线方程为……………………6分
(2)方程()为,则得
, 且
①若是以为底边的等腰三角形,
所以三点共线,而,所以的中点,则
则直线的方程为 …………9分
②若是以为底边的等腰三角形,作轴交
,则中点,,又,得
则直线的方程为.………………12分
③若是以为底边的等腰三角形
的中点,且
,得

所以直线的方程为…………………………15分
综上,当△QMN为等腰三角形时,直线MN的方程为:
y=4,或y=±或y=±.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
已知椭圆的焦点是,,点在椭圆上且满足.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线与椭圆的交点为.
(i)求使 的面积为的点的个数;
(ii)设为椭圆上任一点,为坐标原点,,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆都相切,则双曲线C的离心率是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知向量),,动点的轨迹为T.
(1)求轨迹T的方程,并说明该方程表示的曲线的形状;
(2)当时,已知,试探究是否存在这样的点是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于AB两点,与抛物线交于CD两点.当直线x轴垂直时,
(Ⅰ)求椭圆的方程;
(II)求过点O、,并且与椭圆的左准线相切的圆的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆中心在原点,一个焦点为(,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P是椭圆上一点,M,N分别是两圆:上的点,则|PM|+|PN|的最小值、最大值分别为             (   )
A.4,8B.2,6C.6,8D.8,12

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求下列标准方程(8分)
(1)椭圆的两个焦点坐标分别为(0,2),(0,-2),且点P)在椭圆上.
(2)椭圆长轴是短轴的3倍,且过点A(4,0).
(3)双曲线经过点(-3,2),且一条渐近线为y=x
(4)双曲线离心率为,且过点(4,).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知有公共焦点的椭圆与双曲线中心在原点,焦点在轴上,左右焦点分别为,且它们在第一象限的交点为是以为底边的等要三角形,若,双曲线的离心率的取值范围为,则该椭圆的离心率的取值范围为       

查看答案和解析>>

同步练习册答案