精英家教网 > 高中数学 > 题目详情
已知实数x,y满足x2+y2-xy+x-y+1=0,试求xy的值.
考点:有理数指数幂的化简求值
专题:函数的性质及应用
分析:把x2+y2-xy+x-y+1=0,化为∴2x2+2y2-2xy+2x-2y+2=0,然后组成完全平方形式,从而出现三个个非负数的和等于0的形式,那么每一个非负数都等于0,从而求出x、y的值即可,问题得以解决.
解答: 解:∵x2+y2-xy+x-y+1=0,
∴2x2+2y2-2xy+2x-2y+2=0,
∴(x2+y2-2xy)+(x2+2x+1)+(y2-2y+1)=0
即(x+y)2+(x+1)2+(y-1)2=0,
∴x+y=0,x+1=0,y-1=0
∴x=-1,y=1,
∴xy=-1
点评:本题考查了完全平方公式、非负数的性质.记住完全平方公式:(a±b)2=a2±2ab+b2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=x2+bx+3在(-∞,1]上是单调函数,则有(  )
A、b≥2B、b≤2
C、b≥-2D、b≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m、n满足|
m
|=2,|
n
|=3,|m-n|=
17
,则|
m
+
n
|=(  )
A、
7
B、3
C、
11
D、
13

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)满足x2f′(x)-2xf(x)=x3ex,f(2)=-2e2.则x>0时,f(x)(  )
A、有极大值,无极小值
B、有极小值,无极大值
C、既有极大值,又有极小值
D、既无极大值,也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax5-bx3+cx,且f(-3)=7,则f(3)的值为(  )
A、13B、-13C、7D、-7

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,三棱锥D-ABC,已知平面ABC⊥平面ACD,AD⊥DC,AC=6,AB=4
3
,∠CAB=30°
(Ⅰ)求证:BC⊥AD;
(Ⅱ)若二面角A-BC-D为45°,求直线AB与平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个圆柱的侧面与底面均切于一个半径为2cm的球,求此圆柱的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x2+ax+b(a,b∈R)的一个极值点为x=1
(1)求a的值和f(x)的单调区间;
(2)若方程x2-bx-ab=0的两个实根为α,β(α<β),函数f(x)在区间[α,β]上单调,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有2名老师,3名男生,4名女生照相留念,在下列情况中,各有多少种不同站法?
(1)男生必须站在一起;
(2)女生不能相邻;
(3)老师必须坐在中间
(4)若4名女生身高都不等,从左到右女生必须由高到矮的顺序站;
(5)老师不站两端,男生必须站中间.

查看答案和解析>>

同步练习册答案