精英家教网 > 高中数学 > 题目详情

【题目】在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.

()的概率;

()求随机变量的概率分布列和数学期望.

【答案】(Ⅰ)(Ⅱ)见解析

【解析】

求得球放入甲,,丙盒的概率.(I)根据相互独立事件概率计算公式,计算出所求的概率.II)先求得可能的取值是0123,然后根据相互独立事件概率计算公式,计算出分布列,并求得数学期望.

解:由题意知,每次抛掷骰子,球依次放入甲,,丙盒中的概率分别为

()由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,

()由题意知,可能的取值是0123

的分布列为:

0

1

2

3

期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数的值域为,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技公司研究开发了一种新产品,生产这种新产品的每天固定成木为30000元,每生产x件,需另投入成本为t元, ,每件产品售价为10000元.(该新产品在市场上供不应求可全部卖完.)

(1)写出每天利润y关于每天产量x的函数解析式;

(2)当每天产量为多少件时,该公司在这一新产品的生产中每天所获利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.

(1)求的值;

(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?

(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线的参数方程是是参数),设点

()将曲线的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;

()设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮,水轮圆心距离水面2,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点从水中浮现时开始计时,即从图中点开始计算时间.

(1)当秒时点离水面的高度_________

(2)将点距离水面的高度(单位: )表示为时间(单位: )的函数,则此函数表达式为_______________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)


参加书法社团

未参加书法社团

参加演讲社团



未参加演讲社团



1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;

2)在既参加书法社团又参加演讲社团的名同学中,有5名男同学名女同学现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.

查看答案和解析>>

同步练习册答案