精英家教网 > 高中数学 > 题目详情
已知正数a,b满足4a+b=30,使得
1
a
+
4
b
取最小值的实数对(a,b)是
 
考点:基本不等式
专题:不等式的解法及应用
分析:利用“乘1法”和基本不等式的性质即可得出.
解答: 解:∵正数a,b满足4a+b=30,
1
a
+
4
b
=
1
30
(4a+b)(
1
a
+
4
b
)
=
1
30
(8+
b
a
+
16a
b
)
1
30
(8+2
b
a
16a
b
)
=
8
15

当且仅当b=4a=15时取等号.
∴使得
1
a
+
4
b
取最小值的实数对(a,b)是(
15
4
,15)

故答案为:(
15
4
,15)
点评:本题考查了“乘1法”和基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin(x-
π
6
),x∈R
(Ⅰ)求f(x)的最小正周期和对称中心;
(Ⅱ)若将f(x)的图象向左平移m(m>0)个单位后所得到的图象关于y轴对称,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
4
=1的左、右焦点分别为F1、F2,P是双曲线上一点,PF1的中点在y轴上,线段PF2的长为
4
3
,则双曲线的实轴长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x∈R,x2-2x+m≤0”是假命题,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线C:y2=4x的焦点,P为抛物线C上一点,若|PF|=4,则△POF的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,如果f(2013)=-1,那么f(2014)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对任意正整数a、b满足条件f(a+b)=f(a)•f(b)且f(1)=2,则
f(2)
f(1)
+
f(4)
f(3)
+
f(6)
f(5)
+…+
f(2008)
f(2007)
的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2+1-
3
a
(a≠0)
(Ⅰ)若f(x)的图象在x=-1处的切线与直线y=-
1
3
x+1垂直,求实数a的取值;
(Ⅱ)求函数y=f(x)的单调区间;
(Ⅲ)若a=1时,过点M(2,m)(m≠-6),可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式|x-1|-|x+2|≥a的解集为R,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案