精英家教网 > 高中数学 > 题目详情
13.已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|-2≤x≤1}.
(1)求a的值;
(2)若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,求k的取值范围.

分析 (1)求出-2≤ax≤1,而不等式f(x)≤3的解集{x|-2≤x≤1},根据对应关系求出a的值即可;
(2)问题转化为|2x+2|-|2x+1|≤|2x+2-2x-1|=1≤k,从而求出k的范围即可.

解答 解:(1)由|2ax+1|≤3,
得-3≤2ax+1≤3,
故-4≤2ax≤2,
故-2≤ax≤1,
而不等式f(x)≤3的解集{x|-2≤x≤1},
故a=1;
(2)由(1)得:f(x)=|2x+1|,
f(x)-2f($\frac{x}{2}$)=|2x+1|-2|x+1|=|2x+1|-|2x+2|,
若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,
即|2x+2|-|2x+1|≤|2x+2-2x-1|=1≤k,
故k≥1.

点评 本题考查了解绝对值不等式问题,考查绝对值的性质以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{2}+{y^2}=1$的右焦点为F,不垂直x轴且不过F点的直线l与椭圆C相交于A,B两点.
(Ⅰ)若直线l经过点P(2,0),则直线FA、FB的斜率之和是否为定值?若是,求出该定值;若不是,请说明理由;
(Ⅱ)如果FA⊥FB,原点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(Ⅰ)若m=1,求y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若f(x)存在两个极值点x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设D为不等式组$\left\{{\begin{array}{l}{x+y≤1}\\{2x-y≥-1}\\{x-2y≤1}\end{array}}\right.$,表示的平面区域,点B(a,b)为第一象限内一点,若对于区域D内的任一点A(x,y)都有$\overrightarrow{OA}•\overrightarrow{OB}≤1$成立,则a+b的最大值等于(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则$\frac{{2{S_1}}}{S_2}$=(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)由数字1、2、3、4、5、6、7组成无重复数字的七位数,求三个偶数必相邻的七位数的个数及三个偶数互不相邻的七位数的个数;
(2)六本不同的书,分为三组,求在下列条件下各有多少种不同的分配方法?
①每组两本;
②一组一本,一组二本,一组三本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式($\frac{1}{2}$-x)($\frac{1}{3}$-x)>0的解集是(  )
A.{x|$\frac{1}{3}$<x<$\frac{1}{2}$}B.{x|x>$\frac{1}{2}$}C.{x|x<$\frac{1}{3}$}D.{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)(x∈R)的导函数为f′(x),满足f(3)=7,f′(x)<2,则f(x)<2x+1的解集为(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列关于K2的说法正确的是(  )
A.K2在任何相互独立问题中都可以用来检验有关还是无关
B.K2的值越大,两个事件的相关性越大
C.K2是用来判断两个分类变量是否有关系的随机变量,只对于两个分类变量适合
D.K2的观测值的计算公式为K2=$\frac{n(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$

查看答案和解析>>

同步练习册答案