精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)(x∈R)的导函数为f′(x),满足f(3)=7,f′(x)<2,则f(x)<2x+1的解集为(3,+∞).

分析 由f′(x)<2,则f(x)<2x+1可抽象出一个新函数g(x),利用新函数的性质(单调性)解决问题,即可得到答案.

解答 解:设g(x)=f(x)-(2x+1),
因为f(3)=7,f′(x)<2,
所以g(3)=f(3)-(2×3+1)=0,
g′(x)=f′(x)-2<0,
所以g(x)在R上是减函数,且g(3)=0.
所以f(x)<2x+1的解集即是g(x)<0=g(3)的解集.
所以x>3.
故答案为:(3,+∞).

点评 本题考查利用导数研究函数的单调性,解决此类问题的关键是构造函数g(x)=f(x)-(2x+1),然后利用导数研究g(x)的单调性,从而解决问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,则复数$\frac{1-i}{1+i}$的模为(  )
A.0B.$\sqrt{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=|2ax+1|,(a∈R),不等式f(x)≤3的解集{x|-2≤x≤1}.
(1)求a的值;
(2)若$|f(x)-2f(\frac{x}{2})|≤k$恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,在直角梯形BECD中,A为线段CE上一点,DC⊥EC,∠BAE=15°,∠DAC=60°,∠DBA=30°,AB=24m,则为CD=6$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知tanα,$\frac{1}{tanα}$是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<$\frac{7}{2}$π,则cosα+sinα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.-$\sqrt{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知U={x∈N|x<6},P={2,4},Q={1,3,4,6},则(∁UP)∩Q=(  )
A.{3,4}B.{3,6}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,圆被其内接三角形分为4块,现有5种颜色准备用来涂这4块,要求每块涂一种颜色,且相邻两块的颜色不同,则不同的涂色方法有320种.(填数字)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,则i+|i|在复平面上对应的点是(  )
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)(x∈R)满足f(-x)=4-f(x),函数$g(x)=\frac{x-2}{x-1}+\frac{x}{x+1}$,若曲线y=f(x)与y=g(x)图象的交点分别为(x1,y1),(x2,y2),(x3,y3),…,(xm,ym),则$\sum_{i=1}^m{({x_i}+{y_i})=}$2m(结果用含有m的式子表示).

查看答案和解析>>

同步练习册答案