精英家教网 > 高中数学 > 题目详情
设a、b、x、y都是正数,且x+y=a+b.求证:
a2
a+x
+
b2
b+y
a+b
2
.(用柯西不等式证明)
考点:不等式的证明
专题:选作题,综合法
分析:根据柯西不等式可得(a+x+b+y)(
a2
a+x
+
b2
b+y
)≥(a+b)2,结合x+y=a+b即可得出结论.
解答: 证明:由柯西不等式可得(a+x+b+y)(
a2
a+x
+
b2
b+y
)≥(a+b)2
由于x+y=a+b,所以a+x+b+y=2(a+b)
所以2(a+b)(
a2
a+x
+
b2
b+y
)≥(a+b)2
所以
a2
a+x
+
b2
b+y
a+b
2
点评:本题主要考查了二元形式的柯西不等式的内容与形式,掌握根据柯西不等式的内容即:(ac+bd)2≤(a2+b2)(c2+d2)是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四边形ABCD与BDEf均为菱形,已知∠DAB=∠DBF=60°,且面ABCD⊥面BDEF,AC=2
3

(1)求证:OF⊥平面ABCD;
(2)求二面角F-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2
2
,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2)
(1)若θ=
π
2
,求证:CD⊥AB;
(2)是否存在适当θ的值,使得AC⊥BD,若存在,求出θ的值,若不存在说明理由;
(3)取BD中点M,BC中点N,P、Q分别为线段AB与DN上一点,使得
AP
PB
=
NQ
QD
=λ(λ∈R)
.令PQ与BD和AN所成的角分别为θ1和θ2.求证:对任意θ∈(0.π),总存在实数λ,使得sinθ1+sinθ2均存在一个不变的最大值.并求出此最大值和取得最大值时θ与λ的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期为T=6π,且f(2π)=2
(1)求ω和A的值;
(2)设α,β∈[0,
π
2
],f(3α+π)=
16
5
,f(3β+
2
)=-
20
13
,求cos(α-β).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差大于0,且a3,a5是方程x2-14x+45=0的两根,数列{bn}的前n项和为Sn,且Sn=
1-bn
2
(n∈N).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)记cn=an•bn,比较cn+1与cn的大小;
(Ⅲ)记cn=an•bn求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax-by+1=0平分圆C:x2+y2+2x-4y+1=0的周长,则ab的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果(2x-1)6=a0+a1x+a2x2+…+a6x6,那么a1+a2+…+a6的值等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,如果存在正实数k,使对任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2012型增函数”,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x=log52,y=e-
1
2
,z=
1
2
(e是自然对数的底数),则(  )
A、x<y<z
B、y<x<z
C、z<x<y
D、x<z<y

查看答案和解析>>

同步练习册答案