精英家教网 > 高中数学 > 题目详情
如果(2x-1)6=a0+a1x+a2x2+…+a6x6,那么a1+a2+…+a6的值等于
 
考点:二项式定理的应用
专题:计算题,二项式定理
分析:先求得a0=1,再令x=1可得a0+a1+a2+a3+…+a6的值,从而求得a1+a2+a3+…+a6的值.
解答: 解:令x=0,得a0=1;
令x=1,得a0+a1+a2+a3+a4+a5+a6=(2×1-1)6=1;
所以a1+a2+…+a6=0.
故答案为:0.
点评:本题主要考查二项式定理的应用,求展开式的系数和常用的方法是赋值法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当a、b∈R且a+b≠0时,总有[f(a)+f(b)](a+b)>0成立.
(1)若a>b,比较f(a)与f(b)的大小;
(2)若关于x的不等式f(m×2x)+f(2x-4x+m)<0对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=
2
a,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.
(1)求证:四边形EFCD为直角梯形;
(2)求二面角B-EF-C的平面角的正切值;
(2)设SB的中点为M,当
CD
AB
的值是多少时,能使△DMC为直角三角形?请给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、x、y都是正数,且x+y=a+b.求证:
a2
a+x
+
b2
b+y
a+b
2
.(用柯西不等式证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长是2,B=60°,以AC为棱折成一个二面角B-AC-D,使B,D两点的距离是3,则二面角B-AC-D的大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线BD折成直二面角,则二面角B-AC-D的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b,且不等式|f(x)|≤2|x2-x-2|对一切x∈R恒成立,则不等式x2+ax+b<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a1=1,S5=25,若点P1(1,a3),P2(a4,-3),则直线P1P3的斜率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,则
3-i
2+i
等于(  )
A、-1+iB、-1-i
C、1+iD、1-i

查看答案和解析>>

同步练习册答案