精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn满足:Sn=Sn-1+an-1+2n(n≥2,n∈N),且首项a1=1
(1)求数列{an}的通项公式;
(2)令bn=
2n
anan+1
,证明:对一切正整数n,有b1+b2+…bn<1.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得an=Sn-Sn-1=an-1+2n,n≥2,a1=1,由此利用累加法能求出数列{an}的通项公式.
(2)由bn=
2n
anan+1
=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1
,利用裂项求和法能证明对一切正整数n,有b1+b2+…bn<1.
解答: (1)解:∵Sn=Sn-1+an-1+2n(n≥2,n∈N),
an=Sn-Sn-1=an-1+2n,n≥2,
又∵a1=1,
∴an=a1+a2-a1+a3-a2+…+an-an-1
=1+2+22+…+2n-1
=
1-2n
1-2

=2n-1.
(2)证明:∵bn=
2n
anan+1
=
2n
(2n-1)(2n+1-1)
=
1
2n-1
-
1
2n+1-1

∴b1+b2+…bn=1-
1
3
+
1
3
-
1
7
+…+
1
2n-1
-
1
2n+1-1

=1-
1
2n+1-1
<1,
∴对一切正整数n,有b1+b2+…bn<1.
点评:本题考查数列的通项公式的求法,考查不等式的证明,是中档题,解题时要认真审题,注意累加法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(-1,O)
(1)求向量
b
+
c
的长度的最大值;
(2)设α=
π
4
,且
a
⊥(
b
+
c
),求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

苗圃中种了一行某种树苗,共20课,现在树苗长大了,为了给树苗留足够的生长空间,决定移走12棵,余8棵,要求(1)原来两端的树苗不移走,(2)原来相邻的树苗不同时留下,则求不同的移树苗的方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的∠A和边b、a,判断三角形解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:(n+1)an=(n-1)an-1+2,求数列{an}的通项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式mx2+2x+6m>0
(1)若解集为{x|2<x<3},求m的值
(2)若解集为{x|x≠-
1
m
},求m的值
(3)若解集为R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A,B,C所对的边分别是a,b,c.若B=105°,C=15°,则
2a
bcos15°+ccos105°
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•sinx,有下列四个结论:
①函数f(x)的图象关于y轴对称;
②存在常数T>0,对任意的实数x,恒有f(x+T)=f(x)成立;
③对于任意给定的正数M,都存在实数x0,使得|f(x0)|≥M;
④函数f(x)的图象上至少存在三个点,使得该函数在这些点处的切线重合.
其中正确结论的序号是
 
(请把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,网格纸上小正方形的边长为1,粗线或粗虚线画出了某简单组合体的三视图和直观图(斜二测画法),则此简单几何体的体积是
 

查看答案和解析>>

同步练习册答案