精英家教网 > 高中数学 > 题目详情
17.已知直线y=kx+1与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围为(  )
A.m≥1B.m≥1或0<m<1C.m≥1且m≠5D.0<m<5且m≠1

分析 通过联立直线与椭圆方程,利用根的判别式大于等于0计算即得结论.

解答 解:由题可知:m≠5,
联立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{5}+\frac{{y}^{2}}{{m}^{2}}=1}\end{array}\right.$,恒有公共点要求△≥0对k∈R恒成立,
∴△=100k2-4(m+5k2)(5-5m)≥0,
整理可得$\frac{1-m}{5}≤{k}^{2}$,
由于k2的最小值为0,所以$\frac{1-m}{5}≤0$,
即m≥1且m≠5,
故选:C.

点评 本题考查椭圆的简单性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.双曲线9x2-4y2=36的渐近线方程是(  )
A.y=$±\frac{3}{2}x$B.y=$±\frac{2}{3}x$C.y=$±\frac{9}{4}x$D.y=$±\frac{4}{9}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某公园设计节日鲜花摆放方案中一个花坛,其中一个花坛由一批花盆堆成六角垛.顶层一个,以下各层堆成正六边形,逐层每边增加一个花盆,设第n层共有花盆的个数为f(n),则f(n)的表达式为f(n)=3n(n-1)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{\sqrt{41}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个四棱柱的三视图如图所示,则其表面积为16+8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面上三个力$\overrightarrow{{F}_{1}}$、$\overrightarrow{{F}_{2}}$、$\overrightarrow{{F}_{3}}$作用于一点且处于平衡状态,|$\overrightarrow{{F}_{1}}$|=1(N),|$\overrightarrow{{F}_{2}}$|=$\frac{\sqrt{6}+\sqrt{2}}{2}$(N),$\overrightarrow{{F}_{1}}$与$\overrightarrow{{F}_{2}}$的夹角为45°,将$\overrightarrow{{F}_{1}}$的起点放在原点,终点在x轴的正半轴,$\overrightarrow{{F}_{2}}$的终点放在第一象限内.
(1)$\overrightarrow{{F}_{3}}$的大小;
(2)求$\overrightarrow{{F}_{1}}$与$\overrightarrow{{F}_{3}}$的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),上顶点为B(0,1).
(1)过点B作直线与椭圆C交于另一点A,若$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,求△ABF外接圆的方程;
(2)若过点M(2,0)作直线与椭圆C相交于两点G,H,设P为椭圆C上动点,且满足$\overrightarrow{OG}$+$\overrightarrow{OH}$=t$\overrightarrow{OP}$(O为坐标原点).当t≥1时,求△OGH面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1(-c,0),F2(c,0)分别是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且|F1F2|=2$\sqrt{3}$,离心率e=$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆右焦点F2作直线l交椭圆M于A,B两点
(1)当直线l的斜率为1时,求△AF1B的面积S
(2)椭圆上是否存在点P,使得以OA、OB为邻边的四边形OAPB为平行四边形(O为坐标原点)?若存在,求出所有的点P的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若不等式x2-ax+a≤1有解,则a的取值范围为(  )
A.a<2B.a=2C.a>2D.a∈R

查看答案和解析>>

同步练习册答案