精英家教网 > 高中数学 > 题目详情
7.若不等式x2-ax+a≤1有解,则a的取值范围为(  )
A.a<2B.a=2C.a>2D.a∈R

分析 不等式x2-ax+a≤1有解,即b2-4ac≥0即可,从而求出a的取值范围.

解答 解:∵不等式x2-ax+a≤1有解,
∴x2-ax+a-1≤0,
∴△=a2-4(a-1)≥0,
即a2-4a+4≥0,
即(a-2)2≥0,
解得a∈R,
故选:D

点评 本题考查了二次函数与不等式的解法与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知直线y=kx+1与椭圆$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1恒有公共点,则实数m的取值范围为(  )
A.m≥1B.m≥1或0<m<1C.m≥1且m≠5D.0<m<5且m≠1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的左、右焦点分别为F1,F2且F2恰为抛物线x=$\frac{1}{4}{y}^{2}$的焦点,设双曲线C与该抛物线的一个交点为A,若△AF1F2是以AF1为底边的等腰三角形,则双曲线C的方程为$\frac{{x}^{2}}{3-2\sqrt{2}}-\frac{{y}^{2}}{2\sqrt{2}-2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在直三棱柱ABC-A1B1C1中,D、M、N分别是AB、AA1、BC1的中点.
(Ⅰ)求证:MN∥平面ABC;
(Ⅱ)再若AC=BC,BB1=$\sqrt{2}$AB,试在BB1上找一点F,使A1B⊥平面CDF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,点P(2,1)在C的渐近线上,则C的率心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}的公比为正数,且a3•a9=2a52,a2=2,则a1的值是(  )
A.$±\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设$a={(\frac{2}{3})^x}$,$b={(\frac{3}{2})^{x-1}}$,$c={log_{\frac{2}{3}}}x$,若x>1,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司招聘员工,初试设置计算机、礼仪、专业技能、基本素质共四个科目的考试,要求专业技能、基本素质都要合格,且计算机、礼仪至少有一门合格,则能取得参加复试的资格,现有甲、乙、丙三个人参加初试,每一个人对这四门考试是否合格相互独立,其合格的概率均相同(见表),且每一门课程是否合格相互独立.
 科目 基本素质 专业技能 计算机 礼仪
 合格的概率 $\frac{2}{3}$ $\frac{3}{4}$ $\frac{1}{3}$ $\frac{1}{4}$
(1)求乙取得参加复试的资格的概率;
(2)记ξ表示三个人中取得复试的资格的人数,求ξ的分布及期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1(a>0)的两条渐近线与以椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的左焦点为圆心、半径为$\frac{16}{5}$的圆相切,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{4}{3}$D.$\frac{6}{5}$

查看答案和解析>>

同步练习册答案