精英家教网 > 高中数学 > 题目详情
19.设$a={(\frac{2}{3})^x}$,$b={(\frac{3}{2})^{x-1}}$,$c={log_{\frac{2}{3}}}x$,若x>1,则a,b,c的大小关系是(  )
A.a<b<cB.c<a<bC.b<c<aD.c<b<a

分析 利用指数函数与对数函数的单调性即可得出.

解答 解:∵$a={(\frac{2}{3})^x}$,$b={(\frac{3}{2})^{x-1}}$,$c={log_{\frac{2}{3}}}x$,x>1,
∴$0<a<\frac{2}{3}$,b>1,c<0,
∴b>a>c.
故选:B.

点评 本题考查了指数函数与对数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),上顶点为B(0,1).
(1)过点B作直线与椭圆C交于另一点A,若$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,求△ABF外接圆的方程;
(2)若过点M(2,0)作直线与椭圆C相交于两点G,H,设P为椭圆C上动点,且满足$\overrightarrow{OG}$+$\overrightarrow{OH}$=t$\overrightarrow{OP}$(O为坐标原点).当t≥1时,求△OGH面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆 $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1内一点P(4,2),过点P的弦AB恰好被点P平分,则直线AB的方程为x+2y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若不等式x2-ax+a≤1有解,则a的取值范围为(  )
A.a<2B.a=2C.a>2D.a∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,F1、F2为其左、右焦点,过F1的直线l交椭圆于A、B两点,△F1AF2的周长为$2(\sqrt{2}+1)$.
(1)求椭圆的标准方程;
(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如下表:
t50110250
Q150108150
(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a•bt,Q=alogbt,并说明理由;
(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.河南省2013级高中学业水平考试在2015年1月16日至18日共考试三天,需考语文、数学、英语、物理、化学、生物、政治、历史、地理九门学科,若语文、数学、英语必须安排在下午,每天上午安排其余的六门学科,且每天上午考两门,下午考一门,问有多少种安排考试顺序的方法(  )
A.540B.720C.3240D.4320

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0两个根,其中a,b,M均不为1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是(  )
A.$\frac{a+b}{2}$=MB.$\sqrt{ab}$=MC.a+b=MD.ab=M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则点C到平面BC1D的距离等于(  )
A.$\sqrt{6}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{6}}{3}$D.$\frac{\sqrt{6}}{9}$

查看答案和解析>>

同步练习册答案