分析 (Ⅰ)连接A1H(H为B1C1的中点),由M、N分别为AA1、BC1的中点可得,MN∥A1H,又A1H?平面A1B1C1,MN?平面A1B1C1,即可证明MN∥平面ABC.
(Ⅱ)作DE⊥A1B交A1B于E,延长DE交BB1于F,连接CF,则A1B⊥平面CDF,点F即为所求,根据CD⊥平面AA1BB,A1B?平面AA1B1B,则CD⊥A1B,A1B⊥DF,DF∩CD=D,满足线面垂直的判定定理,则A1B⊥平面CDF.
解答
解:(Ⅰ)证明:连接A1H(H为B1C1的中点),由M、N分别为AA1、BC1的中点可得,
MN∥A1H,又∵A1H?平面A1B1C1,MN?平面A1B1C1,
∴MN∥平面A1B1C1.
∴由ABC-A1B1C1是直三棱柱,从而有MN∥平面ABC;
(Ⅱ)解:作DE⊥A1B交A1B于E,延长DE交BB1于F,连接CF,则A1B⊥平面CDF,点F即为所求.
∵CD⊥平面AA1B1B,A1B?平面AA1B1B,
∴CD⊥A1B.又A1B⊥DF,DF∩CD=D,
∴A1B⊥平面CDF.
∴此时点F为靠近B的四等分点.
点评 本题主要考查了直线与平面垂直的判定,考查了空间想象能力和推理论证能力,应熟练记忆直线与平面垂直的判定定理,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{5}{\sqrt{41}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 斜三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| t | 50 | 110 | 250 |
| Q | 150 | 108 | 150 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,1] | C. | [0,+∞) | D. | [-1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com