6£®ÒÑÖªF1£¨-c£¬0£©£¬F2£¨c£¬0£©·Ö±ðÊÇÍÖÔ²M£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒ|F1F2|=2$\sqrt{3}$£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýÍÖÔ²ÓÒ½¹µãF2×÷Ö±Ïßl½»ÍÖÔ²MÓÚA£¬BÁ½µã
£¨1£©µ±Ö±ÏßlµÄбÂÊΪ1ʱ£¬Çó¡÷AF1BµÄÃæ»ýS
£¨2£©ÍÖÔ²ÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ¨OÎª×ø±êÔ­µã£©£¿Èô´æÔÚ£¬Çó³öËùÓеĵãPµÄ×ø±êÓëÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©£¨1£©ÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬ÔËÓÃΤ´ï¶¨Àí£¬ÔÙÓÉ¡÷AF1BµÄÃæ»ýS=$\frac{1}{2}$|F1F2|•|y1-y2|£¬¼ÆËã¼´¿ÉµÃµ½Ãæ»ý£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬ÇóµÃPµÄ×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉµÃµ½k£¬¼´¿ÉÅжÏPµÄ´æÔÚºÍÖ±Ïߵķ½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ2c=2$\sqrt{3}$£¬¼´c=$\sqrt{3}$£¬
e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬¿ÉµÃa=2£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
¼´ÓÐÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨¢ò£©£¨1£©ÉèÖ±Ïßl£ºy=x-$\sqrt{3}$£¬
´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬¿ÉµÃ5y2+2$\sqrt{3}$y-1=0£¬
y1+y2=-$\frac{2\sqrt{3}}{5}$£¬y1y2=-$\frac{1}{5}$£¬
Ôò¡÷AF1BµÄÃæ»ýS=$\frac{1}{2}$|F1F2|•|y1-y2|=$\frac{1}{2}$•2$\sqrt{3}$•$\sqrt{£¨-\frac{2\sqrt{3}}{5}£©^{2}+\frac{4}{5}}$=$\frac{4\sqrt{6}}{5}$£»
£¨2£©¼ÙÉèÍÖÔ²ÉÏ´æÔÚµãP£¨m£¬n£©£¬Ê¹µÃÒÔOA¡¢OBΪÁڱߵÄËıßÐÎOAPBΪƽÐÐËıßÐΣ®
ÉèÖ±Ïß·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2-8$\sqrt{3}$k2x+12k2-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉ$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Ôòm=x1+x2£¬n=y1+y2£¬
x1+x2=$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬x1x2=$\frac{12{k}^{2}-4}{1+4{k}^{2}}$£¬
y1+y2=k£¨x1+x2-2$\sqrt{3}$£©=k£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$-2$\sqrt{3}$£©=$\frac{-2\sqrt{3}k}{1+4{k}^{2}}$£¬
¼´ÓÐP£¨$\frac{8\sqrt{3}{k}^{2}}{1+4{k}^{2}}$£¬$\frac{-2\sqrt{3}k}{1+4{k}^{2}}$£©£¬
´úÈëÍÖÔ²·½³Ì¿ÉµÃ$\frac{48{k}^{4}}{£¨1+4{k}^{2}£©^{2}}$+$\frac{12{k}^{2}}{£¨1+4{k}^{2}£©^{2}}$=1£¬
½âµÃk2=$\frac{1}{8}$£¬½âµÃk=¡À$\frac{\sqrt{2}}{4}$£¬
¹Ê´æÔÚµãP£¨$\frac{\sqrt{3}}{3}$£¬-$\frac{\sqrt{6}}{6}$£©£¬»ò£¨$\frac{\sqrt{3}}{3}$£¬$\frac{\sqrt{6}}{6}$£©£¬
ÔòÓÐÖ±Ïßl£ºy=$\frac{\sqrt{2}}{4}$x-$\frac{\sqrt{6}}{4}$»òy=-$\frac{\sqrt{2}}{4}$x+$\frac{\sqrt{6}}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÀëÐÄÂʹ«Ê½ºÍ·½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªf£¨x£©=ax2+bx+c£¨a£¾0£©£¬Èôf£¨x£©=xûÓÐʵ¸ù£¬ÊԱȽÏf£¨f£¨x£©£©ÓëxµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÖ±Ïßy=kx+1ÓëÍÖÔ²$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{m}$=1ºãÓй«¹²µã£¬ÔòʵÊýmµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®m¡Ý1B£®m¡Ý1»ò0£¼m£¼1C£®m¡Ý1ÇÒm¡Ù5D£®0£¼m£¼5ÇÒm¡Ù1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬F1¡¢F2·Ö±ðΪÆä×óÓÒ½¹µã£¬µãBΪÍÖÔ²ÓëyÖáµÄÒ»¸ö½»µã£¬¡÷BF1F2µÄÖܳ¤Îª6+2$\sqrt{6}$£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôµãAΪÍÖÔ²µÄ×󶥵㣬бÂÊΪkµÄÖ±Ïßl¹ýµãE£¨1£¬0£©£¬ÇÒÓëÍÖÔ²½»ÓÚC£¬DÁ½µã£¬kAC£¬kAD·Ö±ðΪֱÏßAC£¬ADµÄбÂÊ£¬¶ÔÈÎÒâµÄk£¬Ì½Ë÷kAC•kADÊÇ·ñΪ¶¨Öµ£®ÈôÊÇÔòÇó³ö¸ÃÖµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªF1¡¢F2ÊÇÍÖÔ²$\frac{{x}^{2}}{49}$+$\frac{{y}^{2}}{24}$=1µÄÁ½¸ö½¹µã£¬AΪÍÖÔ²ÉÏÒ»µã£¬Ôò¡÷AF1F2µÄÖܳ¤Îª£¨¡¡¡¡£©
A£®4$\sqrt{6}$B£®12C£®14D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉÏÇÒÖÜÆÚΪ3µÄº¯Êý£¬µ±x¡Ê[0£¬3£©Ê±£®f£¨x£©=|x2-4x+3|£¬Èôº¯Êýy=f£¨x£©-aÔÚÇø¼ä[-4£¬4]ÉÏÓÐ8¸ö»¥²»ÏàͬµÄÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨0£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾0£¬b£¾0£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2ÇÒF2ǡΪÅ×ÎïÏßx=$\frac{1}{4}{y}^{2}$µÄ½¹µã£¬ÉèË«ÇúÏßCÓë¸ÃÅ×ÎïÏßµÄÒ»¸ö½»µãΪA£¬Èô¡÷AF1F2ÊÇÒÔAF1Ϊµ×±ßµÄµÈÑüÈý½ÇÐΣ¬ÔòË«ÇúÏßCµÄ·½³ÌΪ$\frac{{x}^{2}}{3-2\sqrt{2}}-\frac{{y}^{2}}{2\sqrt{2}-2}=1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼËùʾ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬D¡¢M¡¢N·Ö±ðÊÇAB¡¢AA1¡¢BC1µÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºMN¡ÎÆ½ÃæABC£»
£¨¢ò£©ÔÙÈôAC=BC£¬BB1=$\sqrt{2}$AB£¬ÊÔÔÚBB1ÉÏÕÒÒ»µãF£¬Ê¹A1B¡ÍÆ½ÃæCDF£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³¹«Ë¾ÕÐÆ¸Ô±¹¤£¬³õÊÔÉèÖüÆËã»ú¡¢ÀñÒÇ¡¢×¨Òµ¼¼ÄÜ¡¢»ù±¾ËØÖʹ²Ëĸö¿ÆÄ¿µÄ¿¼ÊÔ£¬ÒªÇóרҵ¼¼ÄÜ¡¢»ù±¾ËØÖʶ¼ÒªºÏ¸ñ£¬ÇÒ¼ÆËã»ú¡¢ÀñÒÇÖÁÉÙÓÐÒ»Ãźϸñ£¬ÔòÄÜÈ¡µÃ²Î¼Ó¸´ÊÔµÄ×ʸñ£¬ÏÖÓмס¢ÒÒ¡¢±ûÈý¸öÈ˲μӳõÊÔ£¬Ã¿Ò»¸öÈ˶ÔÕâËÄÃÅ¿¼ÊÔÊÇ·ñºÏ¸ñÏ໥¶ÀÁ¢£¬ÆäºÏ¸ñµÄ¸ÅÂʾùÏàͬ£¨¼û±í£©£¬ÇÒÿһÃſγÌÊÇ·ñºÏ¸ñÏ໥¶ÀÁ¢£®
 ¿ÆÄ¿ »ù±¾ËØÖʠרҵ¼¼ÄÜ ¼ÆËã»ú ÀñÒÇ
 ºÏ¸ñµÄ¸ÅÂÊ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{1}{3}$ $\frac{1}{4}$
£¨1£©ÇóÒÒÈ¡µÃ²Î¼Ó¸´ÊÔµÄ×ʸñµÄ¸ÅÂÊ£»
£¨2£©¼Ç¦Î±íʾÈý¸öÈËÖÐÈ¡µÃ¸´ÊÔµÄ×ʸñµÄÈËÊý£¬Çó¦ÎµÄ·Ö²¼¼°ÆÚÍûE¦Î£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸