精英家教网 > 高中数学 > 题目详情
14.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),F1、F2分别为其左右焦点,点B为椭圆与y轴的一个交点,△BF1F2的周长为6+2$\sqrt{6}$,椭圆的离心率为$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆的方程;
(2)若点A为椭圆的左顶点,斜率为k的直线l过点E(1,0),且与椭圆交于C,D两点,kAC,kAD分别为直线AC,AD的斜率,对任意的k,探索kAC•kAD是否为定值.若是则求出该值,若不是,请说明理由.

分析 (1)通过椭圆的定义计算即得结论;
(2)设直线l的方程并与椭圆方程联立,利用韦达定理及斜率公式计算即得结论.

解答 解:(1)∵点B为椭圆与y轴的一个交点,△BF1F2的周长为6+2$\sqrt{6}$,
∴由椭圆的定义及可知:c+$\sqrt{{b}^{2}+{c}^{2}}$=3+$\sqrt{6}$,
又∵e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$、a2-b2=c2
∴a2=9,b2=3,
∴椭圆的方程为$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1;
(2)结论:kAC•kAD为定值-$\frac{1}{6}$.
理由如下:
由题可知A(-3,0),
∵斜率为k的直线l过点E(1,0),
∴直线l的方程为:y=k(x-1),
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y可得:(1+3k2)x2-6k2x+3k2-9=0,
设C(x1,y1),D(x2,y2),
则x1+x2=$\frac{6{k}^{2}}{1+3{k}^{2}}$,x1x2=$\frac{3{k}^{2}-9}{1+3{k}^{2}}$,
∴kAC•kAD=$\frac{{y}_{1}-0}{{x}_{1}+3}$•$\frac{{y}_{2}-0}{{x}_{2}+3}$
=$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}+3({x}_{1}+{x}_{2})+9}$
=$\frac{{k}^{2}({x}_{1}-1)({x}_{2}-1)}{{x}_{1}{x}_{2}+3({x}_{1}+{x}_{2})+9}$
=k2•$\frac{{x}_{1}{x}_{2}-({x}_{1}+{x}_{2})+1}{{x}_{1}{x}_{2}+3({x}_{1}+{x}_{2})+9}$
=k2•$\frac{\frac{3{k}^{2}-9}{1+3{k}^{2}}-\frac{6{k}^{2}}{1+3{k}^{2}}+1}{\frac{3{k}^{2}-9}{1+3{k}^{2}}+3•\frac{6{k}^{2}}{1+3{k}^{2}}+9}$
=-$\frac{1}{6}$.

点评 本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在分别标有号码2,3,4,6,8,9的6张卡片中,随机取出两张卡片,记下它们的标号,则较大标号能被较小标号整除的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的离心率是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{5}{\sqrt{41}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.平面上三个力$\overrightarrow{{F}_{1}}$、$\overrightarrow{{F}_{2}}$、$\overrightarrow{{F}_{3}}$作用于一点且处于平衡状态,|$\overrightarrow{{F}_{1}}$|=1(N),|$\overrightarrow{{F}_{2}}$|=$\frac{\sqrt{6}+\sqrt{2}}{2}$(N),$\overrightarrow{{F}_{1}}$与$\overrightarrow{{F}_{2}}$的夹角为45°,将$\overrightarrow{{F}_{1}}$的起点放在原点,终点在x轴的正半轴,$\overrightarrow{{F}_{2}}$的终点放在第一象限内.
(1)$\overrightarrow{{F}_{3}}$的大小;
(2)求$\overrightarrow{{F}_{1}}$与$\overrightarrow{{F}_{3}}$的夹角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),上顶点为B(0,1).
(1)过点B作直线与椭圆C交于另一点A,若$\overrightarrow{AB}$•$\overrightarrow{BF}$=0,求△ABF外接圆的方程;
(2)若过点M(2,0)作直线与椭圆C相交于两点G,H,设P为椭圆C上动点,且满足$\overrightarrow{OG}$+$\overrightarrow{OH}$=t$\overrightarrow{OP}$(O为坐标原点).当t≥1时,求△OGH面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点A(0,3),离心率e=$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)过A点的直线l被椭圆C截得的弦长|AB|=$\frac{24\sqrt{2}}{7}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1(-c,0),F2(c,0)分别是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,且|F1F2|=2$\sqrt{3}$,离心率e=$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆右焦点F2作直线l交椭圆M于A,B两点
(1)当直线l的斜率为1时,求△AF1B的面积S
(2)椭圆上是否存在点P,使得以OA、OB为邻边的四边形OAPB为平行四边形(O为坐标原点)?若存在,求出所有的点P的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中既是奇函数又是增函数的是(  )
A.y=3x+1B.y=2-x-2xC.y=x2+1D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如下表:
t50110250
Q150108150
(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a•bt,Q=alogbt,并说明理由;
(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.

查看答案和解析>>

同步练习册答案