精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的函数,下列命题正确的是(  )
A、若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在(a,b)内有零点,则有f(a)•f(b)<0
B、若f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)>0,则其在(a,b)内没有零点
C、若f(x)在区间(a,b)上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点
D、如果函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)•f(b)<0,则其在(a,b)内有零点
考点:函数零点的判定定理
专题:函数的性质及应用
分析:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.
解答: 解:①y=x2,在(-1,1)内有零点,但是f(-1)•f(1)>0,故A不正确,
②y=x2,f(-1)•f(1)>0,在(-1,1)内有零点,故B不正确,
③若f(x)在区间(a,b)上的图象是一条连续不断的曲线,f(a)=-1,f(b)=1,在(a,b)恒成立有f(x)>0,可知满足f(a)•f(b)<0,但是其在(a,b)内没有零点.故C不正确.
所以ABC不正确,
故选;D
点评:本题主要考查函数零点的定义,函数零点的判定定理,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|2x-1≥4},B={x|x2-2x-3<0},则A∩(∁RB)等于(  )
A、{x|x≥3}
B、{x|x>3}
C、{x|-1<x<3}
D、{x|x≥3或x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P在函数f(x)=-
4
x+2
的图象上,定点M(-4,-2),则线段PM长度的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各区间存在函数f(x)=sinx零点的是(  )
A、(
π
6
π
4
B、(
π
4
π
3
C、(
π
3
4
D、(
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-2sin(x+
π
8
)[sin(x+
π
8
)-cos(x+
π
8
)]
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
2
π
12
],求函数f(x+
π
8
)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(
π
2
-α),sinα),
b
=(sin(
π
2
+β),sinβ),且0<β<α<π,向量
c
=(cos
π
2
,sin
π
3
),
d
=(sinπ,sin
3
),若
a
+
b
=
c
+
d
,则以下说法正确的是(  )
A、sinα>sinβ
B、cos(α-β)=1
C、α+β>π
D、sinα<tanβ

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列中:若a1+a2+a3=42,Sn=105,an+an-1+aa-2=84,求n及此数列的a1,d,an

查看答案和解析>>

科目:高中数学 来源: 题型:

定义max{a,b}=
a,a≥b
b,a<b
,设实数x,y满足约束条件
|x|≤2
|y|≤2
,则z=max{4x+y,3x-y}的取值范围是(  )
A、[-8,10]
B、[-7,10]
C、[-6,8]
D、[-7,8]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某市今年1月份前30天空气质量指数(AQI)的趋势图.

(1)根据该图数据在答题卷中完成频率分布表,并在图3中作出这些数据的频率分布直方图;
 分组频数 频率 
[20,40)  
[40,60)  
[60,80)  
[80,100)  
[100,120)  
[120,140)  
[140,160)  
[160,180)  
[180.200]  
 合计 30 1
(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月1日至10日中的某一天到达该市,并停留2天,设ξ是此人停留期间空气质量优良的天数,求ξ的数学期望.

(图中纵坐标1/300即
1
300
,以此类推)

查看答案和解析>>

同步练习册答案