精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可以继续参加科目B的考试。每个科目只允许有一次补考机会,两个科目成绩均合格方可获得该项合格证书,现在某同学将要参加这项考试,已知他每次考科目A成绩合格的概率均为,每次考科目B成绩合格的概率均为。假设他在这项考试中不放弃所有的考试机会,且每次的考试成绩互不影响,记他参加考试的次数为
(Ⅰ)求的分布列和期望
(Ⅱ)求该同学在这项考试中获得合格证书的概率.
(Ⅰ)的分布列为

2
3
4
P



   故
(Ⅱ)该同学在这项考试中获得合格证书的概率为
解:(Ⅰ)设该同学“第一次考科目A成绩合格”为事件A1,“科目A补考后成绩合格”为事件A2,“第一次考科目B成绩合格”为事件B1,“科目B补考后成绩合格”为事件B2
由题意知,可能取得的值为:2,3,4 …………2分

         …………5分
的分布列为

2
3
4
P



   故                            …………7分
(Ⅱ)设“该同学在这项考试中获得合格证书”为事件C


故该同学在这项考试中获得合格证书的概率为           …………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)
一个盒子里装有5个标号是1,2,3,4,5的标签,今随机地抽取两张标签,如果:
(1)标签的抽取是无放回的;
(2)标签的抽取是有放回的。求两张标签上的数字为相邻整数的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14 分)
从甲地到乙地一天共有A、B 两班车,由于雨雪天气的影响,一段时间内A 班车正点到达乙地的概率为0.7,B 班车正点到达乙地的概率为0.75。
(1)有三位游客分别乘坐三天的A 班车,从甲地到乙地,求其中恰有两名游客正点到达的概率
(答案用数字表示)。
(2)有两位游客分别乘坐A、B 班车,从甲地到乙地,求其中至少有1 人正点到达的概率
(答案用数字表示)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)假设某奶粉是经过A、B、C三道工序加工而成的,A、B、C工序的产品合格率分别为。已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;有两道合格为二等品;其它的为废品,不进入市场。
(Ⅰ)正式生产前先试生产2袋奶粉,求这2袋奶粉都为废品的概率;
(Ⅱ)设为加工工序中产品合格的次数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次,某同学在处的命中率,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为
           
0          
2             
   3   
   4   
   5   
        p        
0.03          
   P1              
   P2        
P3          
P4              
(1)求的值;    
(2)求随机变量的数学期望E

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车淮安市公安局交通管理部门于2010年6月的一天对某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有4人,依据上述材料回答下列问题:
(1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数;
(2)从违法驾车的10人中抽取4人,求抽取到醉酒驾车人数的分布列和期望;
(3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.2和0.5,且每位驾驶员是否发生交通事故是相互独立的,依此计算被查处的10名驾驶员中至少有一人发生交通事故的概率 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门。首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门.再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.
(1)求走出迷宫时恰好用了1小时的概率;
(2)求走出迷宫的时间超过3小时的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,直线AB的方程为,向边长为2的正方形内随机地投飞镖,飞镖都能投入正方形内,且投到每个点的可能性相等,

则飞镖落在阴影部分(三角形ABC的内部)的概率是           (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

同时掷两枚骰子,得到的点数和为6的概率是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案