精英家教网 > 高中数学 > 题目详情
设Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
,写出S1,S2,S3,S4的归纳并猜想出结果,并给出证明.
考点:数列的求和,归纳推理
专题:等差数列与等比数列
分析:由已知分别求出S1=
1
2
,S2=
2
3
,S3=
3
4
,S4=
4
5
,归纳猜想:Sn=
n
n+1
,再利用裂项求和法进行证明.
解答: 解:当n=1,2,3,4时,
计算得原式的值分别为:S1=
1
2
,S2=
2
3
,S3=
3
4
,S4=
4
5

观察这4个结果都是分数,
每个分数的分子与项数对应,且分子比分母恰好小1.
归纳猜想:Sn=
n
n+1

证明∵
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,…,
1
n(n+1)
=
1
n
-
1
n+1

∴Sn=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
点评:本题考查数列的前n项和的求法及证明,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|-1≤x≤1},B={x|1-a≤x≤2a-1},若B?A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系中,已知动点P(x,y)到定点F(1,0)的距离与它到y轴的距离之差1.
(1)求点P的轨迹方程;
(2)过原点O作相互垂直的(1)中所求抛物线的两条弦OA、OB,作OQ⊥AB垂足为Q,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
alnx
x+1
+
b
x
,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
sinx
1+cosx
,x∈(-π,π),求当y′=2时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若n为大于1的自然数,求证
1
n+1
+
1
n+2
+…+
1
2n
7
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+2,求f(x)在[-1,1]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
3
+
y2
2
=1的左右焦点分别为F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段P F1的垂直平分线与 l2的交点M的轨迹方程,并说明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AC=
6
,BC=2,∠B=60°,解△ABC.

查看答案和解析>>

同步练习册答案