精英家教网 > 高中数学 > 题目详情
直角坐标系中,已知动点P(x,y)到定点F(1,0)的距离与它到y轴的距离之差1.
(1)求点P的轨迹方程;
(2)过原点O作相互垂直的(1)中所求抛物线的两条弦OA、OB,作OQ⊥AB垂足为Q,求点Q的轨迹方程.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)依题意知,动点P到定点F(1,0)的距离等于P到直线x=-1的距离,曲线C是以原点为顶点,F(1,0)为焦点的抛物线,由此可求曲线C方程;
(2)设Q(x,y),欲求这条曲线的方程,只须求出x,y之间的关系即可,利用OA⊥OB,结合方程根与系数的关系,将此条件用坐标代入化简即得曲线的方程.
解答: 解:(1)依题意知,动点P到定点F(1,0)的距离等于P到直线x=-1的距离,
∴曲线C是以原点为顶点,F(1,0)为焦点的抛物线          
∴p=2
∴曲线C方程是y2=4x
(2)设Q(x,y),A(x1,y1),B(x2,y2),
lAB:y=kx+b,(b≠0)代入抛物线方程,消去y得:k2x2+(2kb-4)x+b2=0,x1x2=
b2
k2

∴y1y2=
4b
k

∵OA⊥OB,∴x1x2+y1y2=0,
所以
b2
k2
+
4b
k
=0,b≠0,∴b=4k,∴直线AB过定点M(4,0),
又OQ⊥AB,∴点O的轨迹是以OM为直径的圆(不含原点O),
∴点P的轨迹方程为(x+2)2+y2=4(y≠0).
点评:本题考查抛物线的定义,考查了直接法求轨迹方程,直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=(1+x)m+(1+x)n(m、n∈N),若其展开式中,关于x的一次项系数为11,试问:m、n取何值时,f(x)的展开式中含x2项的系数取最小值,并求出这个最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x+
3
cos2x.
(1)求f(x)的周期;
(2)写出函数f(x)的图象如何由y=sinx的图象变换得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)sin(180°+α)+cos(270°+α);
(2)
sin(π+α)tan(π-α)
sin(2π+α)tan(2π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知B、C是两个定点,|BC|=10,且△ABC的周长等于24,求顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.
现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的所有可能值组成的集合S;
(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求S中每个元素出现的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某人用7把钥匙去开门,其中只有一把钥匙能打开门上的锁,现逐个任取一把钥匙试开,且打不开的钥匙不放回,设X为找到此门钥匙的开门次数.
(1)列出关于随机变量X的分布列;
(2)求关于随机变量X的期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn=
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
,写出S1,S2,S3,S4的归纳并猜想出结果,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数f(x)=loga 
1
x
(a>1 )的大致图象.

查看答案和解析>>

同步练习册答案