精英家教网 > 高中数学 > 题目详情
7.复数z满足(1-i)z=$\frac{1+3i}{1-2i}$,则|z|=(  )
A.1B.2C.$\frac{5}{2}$D.$\frac{7}{2}$

分析 【法一】根据复数的代数形式的运算法则,求出z,再计算模长|z|;
【法二】根据复数模长公式,对等式直接求模即可.

解答 解:【法一】∵(1-i)z=$\frac{1+3i}{1-2i}$,
∴z=$\frac{1+3i}{(1-2i)(1-i)}$=$\frac{1+3i}{-1-3i}$=-1,
∴|z|=1.
【法二】∵(1-i)z=$\frac{1+3i}{1-2i}$,
∴|1-i|•|z|=$\frac{|1+3i|}{|1-2i|}$,
即$\sqrt{2}$•|z|=$\frac{\sqrt{10}}{\sqrt{5}}$,
解得|z|=1.
故选:A.

点评 本题考查了复数代数形式的运算以及复数模的计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点A(1,$\frac{\sqrt{2}}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M、N时,能在直线y=$\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}$=$\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆$C:\frac{x^2}{4}+\frac{y^2}{3}=1$的左、右焦点分别为F1,F2,椭圆C上点A满足AF2⊥F1F2,若点P是椭圆C上的动点,则$\overrightarrow{{F_1}P}•\overrightarrow{{F_2}A}$的最大值为$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点F为抛物线E:x2=4y的焦点,直线l为准线,C为抛物线上的一点(C在第一象限),以点C为圆心,|CF|为半径的圆与y轴交于D,F两点,且△CDF为正三角形.
(Ⅰ)求圆C的方程;
(Ⅱ)设P为l上任意一点,过P作抛物线x2=4y的切线,切点为A,B,判断直线AB与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,若a2+a8=10,则a1+a3+a5+a7+a9的值是(  )
A.10B.15C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:x-2y-3=0上,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某食品工厂甲、乙两个车间包装某种饼干,在自动包装传递带上每隔15分钟抽取一袋饼干称其重量,测得数据如下(单位:g)
甲:100,96,101,96,97
乙:103,93,100,95,99
(1)这是哪一种抽样方法?
(2)估计甲、乙两个车间的平均数与方差,并说明哪个车间的产品更稳定.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2])

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:函数f(x)=log2(x2-2ax+16)存在最小值;命题q:关于x的方程2x2-(2a-2)x+3a-7=0有实数根.若命题p∧q为真命题,则实数a的取值范围是(-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(sin(x+φ),2),$\overrightarrow{b}$=(1,cos(x+φ)),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$),则f(x)的最小正周期是(  )
A.1B.2C.πD.

查看答案和解析>>

同步练习册答案