精英家教网 > 高中数学 > 题目详情
9.要制作一个容器为4m3,高为1m的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元.问:当容器底面如何设计时,使得容器总造价最低,并求出最小值.

分析 此题首先需要由实际问题向数学问题转化,设池底长和宽分别为a,b,成本为y,建立函数关系式,然后利用基本不等式求出最值即可求出所求.

解答 解:设池底长和宽分别为a,b,成本为y,
则∵长方形容器的容器为4m3,高为1m,
故底面面积S=ab=4,y=20S+10[2(a+b)]=20(a+b)+80,
∵a+b≥2$\sqrt{ab}$=4,
故当a=b=2时,y取最小值160,
即该容器的最低总造价是160元,
当容器底面池底长和宽分别为2,2时,使得容器总造价最低,最小值为160元.

点评 本题以棱柱的体积为载体,考查了基本不等式,难度不大,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求值:
(1)$\frac{sin29°-sin31°}{cos29°-cos31°}$;
(2)$\frac{3-sin70°}{2-co{s}^{2}10°}$;
(3)$\frac{sin7°+sin8°cos15°}{cos7°-sin8°sin165°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=-tan(2x-$\frac{3}{4}π$)的定义域,单调区间及对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若集合M{1,4},集合N={a2},则“a=2”是“M?N”的充分不必要条件.(填“充分不必要”、“必要不充分”、“既不充分又不必要”、“充要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于下列命题
①函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0);
②函数y=sin(x+$\frac{π}{4}$)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函数;
③函数y=cos2($\frac{π}{4}$-x)是偶函数;
④函数y=tanx在第一象限是增函数;
其中正确命题序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a=cos1,b=cos2,c=sin2,则a、b、c的大小关系为(  )
A.a>b>cB.c>a>bC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ex-x的单调递增区间是(  )
A.(-∞,1]B.[1,+∞)C.(-∞,0]D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.统计某学校高二年级某班40名学生的数学期中考试成绩,分数均在40分至100分之间,得到的频率分布直方图如图所示,则成绩不低于60分的人数有32.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l1经过点A(m,1),B(-3,4),l2经过点C(1,m),D(-1,m+1),若l1⊥l2,则m的值为-$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案