精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和Sn=an2+bn(a,b∈R)且a2=3,a6=11,则S7等于(  )
A.13B.35C.49D.63

分析 根据数列的递推式,判断数列{an}为等差数列.由等差数列的性质可知项数之和相等的两项之和相等即a1+a7=a2+a6,求出a1+a7的值,然后利用等差数列的前n项和的公式表示出S7,将a1+a7的值代入即可求出.

解答 解:数列{an}的前n项和Sn=an2+bn(a,b∈R),
可得a1=S1=a+b,n≥2时,an=Sn-Sn-1=an2+bn-a(n-1)2-b(n-1)=2an+b-a,
对n=1也成立,则数列{an}为等差数列.
因为a1+a7=a2+a6=3+11=14,
所以S7=$\frac{7({a}_{1}+{a}_{7})}{2}$=49.
故选C.

点评 此题考查数列的递推式的运用,以及等差数列的性质及前n项和的公式的运用,考查运算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知椭圆C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右焦点分别为F1,F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线与l1的交点的轨迹为曲线C2,若点Q是C2上任意的一点,定点A(4,3),B(1,0),则|QA|+|QB|的最小值为(  )
A.6B.3$\sqrt{3}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知(x2+2x+3y)5的展开式中x5y2(  )
A.60B.180C.520D.540

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知角α的终边经过点P($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则cosα的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.方程$\sqrt{{{({x-3})}^2}+{y^2}}-\sqrt{{{({x+3})}^2}+{y^2}}=4$化简的结果是(  )
A.$\frac{x^2}{4}-\frac{y^2}{5}=1$B.$\frac{y^2}{5}-\frac{x^2}{4}=1$C.$\frac{x^2}{4}-\frac{y^2}{5}=1$(x≤-2)D.$\frac{y^2}{5}-\frac{x^2}{4}=1$(y$≤-\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.样本数据-2,0,6,3,6的众数是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B-EFC的体积;
(3)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)的图象如图所示,则导函数y=f'(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若曲线f(x,y)=0上两个不同的点处的切线重合,则称这条切线为曲线f(x,y)=0的自公切线,则下列方程对应的曲线中存在自公切线的为(  )
①y=x2-|x|+1; ②y=sinx-4cosx;  ③$y=x+\frac{1}{x}$;  ④$|x|+1=\sqrt{4-{y^2}}$.
A.②③B.①②C.①②④D.①②③

查看答案和解析>>

同步练习册答案