精英家教网 > 高中数学 > 题目详情
15.{an}是公差不为0的等差数列,{bn}是公比为正数的等比数列,a1=b1=1,a4=b3,a8=b4,则数列{anbn}的前n项和等于(n-1)2n+1.

分析 通过设{an}的公差为d(d≠0),{bn}的公比为q(q>0),利用已知条件联立方程组可求出d和q,进而利用错位相减法计算即得结论.

解答 解:设{an}的公差为d(d≠0),{bn}的公比为q(q>0),
则由a1=b1=1可知:an=1+(n-1)d,bn=qn-1
又∵a4=b3,a8=b4
∴1+3d=q2,1+7d=q3
∴(1+3d)3=(1+7d)2,整理得27d2-22d-5=0,
解得:d=1或d=-$\frac{5}{27}$(舍),q=2,
∴an=n,bn=2n-1
记cn=anbn=n•2n-1,数列{cn}的前n项和为Sn
则Sn=1•20+2•21+3•22+…+n•2n-1
2Sn=1•21+2•22+…+(n-1)•2n-1+n•2n
两式相减,得:-Sn=20+21+22+…+2n-1-n•2n=$\frac{1-{2}^{n}}{1-2}$-n•2n=-(n-1)2n-1,
所以Sn=(n-1)2n+1,
故答案为:(n-1)2n+1.

点评 本题考查数列的通项及前n项和,考查错位相减法,考查运算求解能力,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A、B、C的对边分别为a、b、c,G是平面△ABC上一点,且满足a•$\overrightarrow{GA}$+b•$\overrightarrow{GB}$+c•$\overrightarrow{GC}$=0,则G是△ABC中的(  )
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值为M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线方程为2x+y=0,则C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,z(1-i)=1+i,则复数z的共轭复数为(  )
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且$\overrightarrow{AE}=λ\overrightarrow{AB},\overrightarrow{AF}=μ\overrightarrow{AC}$,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则$\overrightarrow{MN}$的最小值为$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,角A、B、C的对边分别为a,b,c,且cosC=-$\frac{1}{4}$,c=4,$\frac{sinA}{sinB}$=$\frac{2}{3}$
(I)求a,b的值以及△ABC的面积;
(Ⅱ)记AD为A的角平分线且交BC 于D,求AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知在△ABC中,角A,B,C所对的边分别为a,b,c,若C=2A,c=$\sqrt{3}$a,则$\frac{b}{a}$等于(  )
A.1B.2C.$\sqrt{2}$D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数$f(x)=\left\{\begin{array}{l}{x^2}+bx+c,x≤0\\ lnx,x>0\end{array}\right.$,若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案