精英家教网 > 高中数学 > 题目详情
3.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线方程为2x+y=0,则C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$C.2D.$\sqrt{5}$

分析 由题意设出双曲线的方程,得到它的一条渐近线方程y=$\frac{b}{a}$x即y=-2x,由此可得b:a=2:1,结合双曲线的平方关系可得c与a的比值,求出该双曲线的离心率.

解答 解:∵双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
∴双曲线的渐近线方程为y=±$\frac{b}{a}$x,结合题意一条渐近线方程为y=-2x,
得 b:a=2:1,
设a=t,b=2t,则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$t(t>0)
∴该双曲线的离心率是e=$\frac{c}{a}$=$\frac{\sqrt{5}t}{t}$=$\sqrt{5}$,
故选:D.

点评 本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.定义运算$|\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}|$=ad-bc,复数z满足$|\begin{array}{l}{z}&{1}\\{i}&{i}\end{array}|$=2+i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,复数z满足z(1-i)=3+2i,则z=(  )
A.$\frac{1}{2}$+$\frac{5i}{2}$B.-$\frac{1}{2}$-$\frac{5i}{2}$C.$\frac{5}{2}$+$\frac{5i}{2}$D.-$\frac{5}{2}$-$\frac{5i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数z=$\frac{a+i}{2i}$(其中i为虚数单位)的虚部与实部相等,则实数a的值为(  )
A.1B.$\frac{1}{2}$C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n-1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)+ax2,a>0.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)在区间(-1,0)有唯一零点x0,证明:${e^{-2}}<{x_0}+1<{e^{-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.{an}是公差不为0的等差数列,{bn}是公比为正数的等比数列,a1=b1=1,a4=b3,a8=b4,则数列{anbn}的前n项和等于(n-1)2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将圆C:(x-1)2+y2=25按向量$\overrightarrow{a}$=(1,1)平移得到圆C′,则圆C′的圆心和半径分别为(  )
A.(1,0),5B.(0,1),5C.(-1,0),5D.(2,1),5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$(x-\frac{1}{x}){(2x-1)^6}$的展开式中,x3的系数是-180.(用数字填写答案)

查看答案和解析>>

同步练习册答案