精英家教网 > 高中数学 > 题目详情
14.如图,在△APC中,点B是AC中点,AC=2,∠APB=90°,∠BPC=45°,则$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$.

分析 由已知可得$\overrightarrow{PA}$•$\overrightarrow{PC}$=$\overrightarrow{PA}$•(2$\overrightarrow{PB}$-$\overrightarrow{PA}$)=2$\overrightarrow{PA}$•$\overrightarrow{PB}$-$\overrightarrow{PA}$2=-$\overrightarrow{PA}$2=-|$\overrightarrow{PA}$|2,根据三角形外角平分线定理及勾股定理求出AP长,可得答案.

解答 解:∵在△APC中,点B是AC中点,
∴$\overrightarrow{PA}$+$\overrightarrow{PC}$=2$\overrightarrow{PB}$,即$\overrightarrow{PC}$=2$\overrightarrow{PB}$-$\overrightarrow{PA}$,
故$\overrightarrow{PA}$•$\overrightarrow{PC}$=$\overrightarrow{PA}$•(2$\overrightarrow{PB}$-$\overrightarrow{PA}$)=2$\overrightarrow{PA}$•$\overrightarrow{PB}$-$\overrightarrow{PA}$2
∵∠APB=90°,
∴$\overrightarrow{PA}$•$\overrightarrow{PB}$=0,
即$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\overrightarrow{PA}$2=-|$\overrightarrow{PA}$|2
∵∠BPC=45°,AC=2,
由三角形外角平分线定理得:PA:PB=AC:BC,
故AP=2PB,AB=1,
解得:AP=$\frac{2\sqrt{5}}{5}$,
故$\overrightarrow{PA}$•$\overrightarrow{PC}$=-$\frac{4}{5}$,
故答案为:-$\frac{4}{5}$

点评 本题考查的知识点是平面向量的数量积运算,平面向量在平面几何中的应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,3),求$\overrightarrow a•\overrightarrow b$,$|{\overrightarrow a}|$及$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点P向x轴作垂线,垂足为左焦点F,A,B分别为E的右顶点,上顶点,且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求椭圆E的方程;
(2)C,D为E上的两点,若四边形ACBD(A,C,B,D逆时针排列)的对角线CD所在直线的斜率为k,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f'(x)是f(x)=sinx+acosx的导函数,且f'($\frac{π}{4}$)=$\frac{{\sqrt{2}}}{4}$,则实数a的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2bx-4a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,2]上的“局部奇函数”,求实数m的取值范围;
(3)设f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列判断错误的是(  )
A.若p∧q为假命题,则p,q至少之一为假命题
B.命题“?x∈R,x2-x-1<0”的否定是“?x∈R,x2-x-1≥0”
C.幂函数f(x)=mxm-2在其定义域上为减函数
D.“若am2<bm2,则a<b”的否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件B.不可能事件
C.互斥但不对立事件D.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数y=a2-x+1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-1=0,(mn>0)上,则 $\frac{1}{m}$+$\frac{1}{n}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设0<a<$\frac{1}{2}$,则a,a${\;}^{\sqrt{a}}}$,a${\;}^{a^a}}$的大小关系是(  )
A.$a>{a^{a^a}}>{a^{\sqrt{a}}}$B.$a>{a^{\sqrt{a}}}>{a^{a^a}}$C.${a^{a^a}}>a>{a^{\sqrt{a}}}$D.${a^{\sqrt{a}}}>{a^{a^a}}>a$

查看答案和解析>>

同步练习册答案