精英家教网 > 高中数学 > 题目详情
19.若集合A={x|-1≤x≤1},B={x|x≥0},则A∩B=(  )
A.{x|0≤x≤1}B.{x|-1≤x<0}C.{x|x<-1}D.{x|x≥-1}

分析 根据集合的基本运算进行求解.

解答 解:∵A={x|-1≤x≤1},B={x|x≥0},
∴A∩B={x|0≤x≤1},
故选:A.

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,是2007年在广州举行的全国少数民族运动会上,七位评委为某民族舞蹈打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.84,4.84B.84,1.6C.85,2.4D.85,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10. 如图,设椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左右焦点分别为F1、F2,过焦点F1的直线交椭圆于A、B两点,若以△ABF2的内切圆的面积为π,设A(x1,y1)、B((x2,y2),则|y1-y2|值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题:“若a≥b,则2a≥2b”的逆否命题为若2a<2b,则a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆A:(x+2)2+y2=1,圆B:(x-2)2+y2=49,动圆P与圆A,圆B均相切.
(1)求动圆圆心P的轨迹方程;
(2)已知点N(2,$\frac{5}{3}$),作射线AN,与“P点 轨迹”交于另一点M,求△MNB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某校的一个社会实践调查小组,在对该校学生的良好“用眼习惯”的调查中,随机发放了120分问卷.对收回的100份有效问卷进行统计,得到如2×2下列联表:
做不到科学用眼能做到科学用眼合计
451055
301545
合计7525100
(1)现按女生是否能做到科学用眼进行分层,从45份女生问卷中抽取了6份问卷,从这6份问卷中再随机抽取3份,并记其中能做到科学用眼的问卷的份数X,试求随机变量X的分布列和数学期望;
(2)若在犯错误的概率不超过P的前提下认为良好“用眼习惯”与性别有关,那么根据临界值表,最精确的P的值应为多少?请说明理由.
附:独立性检验统计量${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
独立性检验临界值表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知中心在原点O,焦点在x轴上的椭圆的一个顶点为B(0,1),B到焦点的距离为2.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P,Q是椭圆上异于点B的任意两点,且BP⊥BQ,线段PQ的中垂线l与x轴的交点为(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1的两焦点分别为F1,F2,过F1的直线与椭圆交于A,B两点,则△ABF2的周长为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2acos2x+2$\sqrt{3}$bsinxcosx,且f(0)=2,f($\frac{π}{4}$)=$\sqrt{3}$+1.
(1)求f(x)的最大值及单调递减区间;
(2)若α≠β,α,β∈(0,π),且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

同步练习册答案