精英家教网 > 高中数学 > 题目详情
15.已知{an}是等比数列,且a3a5a7a9a11=243,则$\frac{{{a}_{10}}^{2}}{{a}_{13}}$=3.

分析 利用等比数列的性质即可得出.

解答 解:∵{an}是等比数列,且a3a5a7a9a11=243,
∴${a}_{7}^{5}$=243,解得a7=3.
则$\frac{{{a}_{10}}^{2}}{{a}_{13}}$=a7=3.
故答案为:3.

点评 本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\overrightarrow{AD}$=$\overrightarrow{DC}$,$\overrightarrow{BD}$=$\frac{\sqrt{17}}{2}$,|$\overrightarrow{AB}$|=2,cosB=$\frac{1}{3}$,则△DBC的面积为(  )
A.3B.$\sqrt{2}$C.2$\sqrt{2}$D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合M={0,a},N={x|x2-2x-3<0,x∈N+},若M∩N≠∅,则a的值为1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.探究函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如表:
x0.511.51.71.922.12.22.33457
y8.554.174.054.00544.0054.024.044.355.87.57
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(0,2)上递减;
函数f(x)=x+$\frac{4}{x}$,x∈(0,+∞)在区间(2,+∞)上递增.
当x=2时,y最小=4.
(2)证明:函数f(x)=x+$\frac{4}{x}$(x>0)在区间(0,2)递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a,b,c为实数,且a+b+c=2m-2,a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2=1-m.
(1)求证:a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2≥$\frac{(a+b+c)^{2}}{14}$;
(2)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$\frac{sinα}{sinα+cosα}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(tanα,2),则$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x,y∈R+,且x+y=5,则$\sqrt{x+1}+\sqrt{y+3}$的最大值是(  )
A.$3\sqrt{2}$B.$\frac{9}{2}$C.9D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f(x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间[-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同实根,则a的取值范围是(  )
A.$\root{3}{4}$<a<2B.1<a<2C.$\root{3}{4}$<a<$\root{6}{9}$D.1<a<$\root{3}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设23-2x<23x-4,则x的取值范围是x>$\frac{7}{5}$.

查看答案和解析>>

同步练习册答案