分析 由题意可得y=-cos(2x-2m)的图象和y=$\frac{k}{2}$sin2x(k>0)的图象关于点$(\frac{π}{3},0)$对称,设点P(x0,y0)为y=-cos(2x-2m)上任意一点,则该点关于$(\frac{π}{3},0)$对称点为$Q(\frac{2π}{3}-{x_0},-{y_0})$在y=$\frac{k}{2}$sin2x(k>0)的图象上,故有$\left\{\begin{array}{l}{-cos({2x}_{0}-2m){=y}_{0}}\\{\frac{k}{2}sin(\frac{4π}{3}-{2x}_{0})={-y}_{0}}\end{array}\right.$,求得k=2,且cos(2x0-$\frac{5π}{6}$)=cos(2x0-2m),由此求得k+m的最小正值.
解答 解:将函数y=sin2x-cos2x=-cos2x的函数图象向右平移m个单位以后得到y=-cos2(x-m)=-cos(2x-2m)的图象,
根据所得图象与y=ksinxcosx=$\frac{k}{2}$sin2x(k>0)的图象关于$(\frac{π}{3},0)$对称,
设点P(x0,y0)为y=-cos(2x-2m)上任意一点,
则该点关于$(\frac{π}{3},0)$对称点为$Q(\frac{2π}{3}-{x_0},-{y_0})$在y=$\frac{k}{2}$sin2x(k>0)的图象上,故有$\left\{\begin{array}{l}{-cos({2x}_{0}-2m){=y}_{0}}\\{\frac{k}{2}sin(\frac{4π}{3}-{2x}_{0})={-y}_{0}}\end{array}\right.$,
求得k=2,sin(2x0-$\frac{π}{3}$)=cos(2x0-2m),即cos(2x0-$\frac{5π}{6}$)=cos(2x0-2m),
∴-2m=-$\frac{5π}{6}$+2kπ,k∈Z,即 2m=$\frac{5π}{6}$-2kπ,k∈Z,故m的最小正值为$\frac{5π}{12}$,
则k+m的最小正值为2+$\frac{5π}{12}$.
点评 本题主要考查三角恒等变换,正弦函数的图象,两个函数的图象关于某个点对称的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+2y-5=0 | B. | x-2y+3=0 | C. | 2x+y-4=0 | D. | 2x-y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{21}{25}$ | B. | $\frac{25}{21}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com