分析 三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,求出长方体的三度,转化为对角线长,即可求解外接球的体积.
解答 解:三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,补成长方体,两者的外接球是同一个,长方体的对角线就是球的直径,
设长方体的三度为a,b,c由题意得:a2+b2=34,a2+c2=41,b2+c2=25,
解得:a2+b2+c2=50,
所以球的直径为:5$\sqrt{2}$
它的半径为$\frac{5\sqrt{2}}{2}$,
球的体积为$\frac{4}{3}π•(\frac{5\sqrt{2}}{2})^{3}$=$\frac{{125\sqrt{2}}}{3}π$.
故答案为:$\frac{{125\sqrt{2}}}{3}π$.
点评 本题是基础题,考查几何体的外接球的体积,三棱锥转化为长方体,两者的外接球是同一个,以及长方体的对角线就是球的直径是解题的关键所在.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2] | B. | [1,2) | C. | [0,3] | D. | (0,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{6}$ | B. | 向右平移$\frac{π}{12}$ | C. | 向左平移$\frac{π}{6}$ | D. | 向左平移$\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com