精英家教网 > 高中数学 > 题目详情
18.已知集合A={0,1},B={2,3,4},若从A,B中各取一个数,则这两个数之和不小于4的概率为$\frac{1}{2}$.

分析 集合合A={0,1},B={2,3,4},从A,B中各取任意一个数,取法总数为6,这两个数之和不小于4的情况有2种,由此能求出两个数之和不小于4的概率

解答 解:集合A={0,1},B={2,3,4},从A,B中各取任意一个数,
取法总数为:2×3=6,
这两个数之和不小于4的情况有,0+4,1+3,1+4共3种,
∴这两个数之和不小于4的概率p=$\frac{3}{6}$=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$

点评 本题考查概率的求法,是基础题,解题时要注意古典概型概率计算公式的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知sinα+cosα=$\frac{1}{3}$,且0<α<π.求sin2α,cos2α,tan2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cosxsin(x+$\frac{π}{6}$).
(I)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=1,sinB=2sinA,且△ABC的面积为2$\sqrt{3}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥A-BCD满足棱AB,AC,AD两两互相垂直,且$|{BC}|=\sqrt{34},|{CD}|=\sqrt{41}$,|BD|=5.则三棱锥A-BCD外接球的体积为$\frac{{125\sqrt{2}}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\frac{x}{x+a}$,若函数y=f(x+2)-1为奇函数,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在三棱柱ABC-A1B1C1中,侧棱AA1⊥平面AB1C1,AA1=1,底面△ABC是边长为2的正三角形,则此三棱柱的体积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$x3+ax2-x+b,其中a,b为常数.
(1)当a=-1时,若函数f(x)在[0,1]上的最小值为$\frac{1}{3}$,求b的值;
(2)讨论函数f(x)在区间(a,+∞)上的单调性;
(3)若曲线y=f(x)上存在一点P,使得曲线在点P处的切线与经过点P的另一条切线互相垂直,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了判断高中二年级学生是否喜欢足球运动与性别的关系,现随机抽取50名学生,得到2×2列联表:
 喜欢不喜欢总计
151025
52025
总计203050
附表:
P(K2≥k00.0100.005 0.001
k06.6357.87910.828
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
则有99.5%以上的把握认为“喜欢足球与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为$\frac{4}{9}$,乙、丙应聘成功的概率均为$\frac{t}{3}$(0<t<3),且三人是否应聘成功是相互独立的.
(Ⅰ)若甲、乙、丙都应聘成功的概率是$\frac{16}{81}$,求t的值;
(Ⅱ)在(Ⅰ)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的数学期望.

查看答案和解析>>

同步练习册答案