| A. | $\frac{2π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{5}{6}$π | D. | $\frac{π}{3}$ |
分析 由已知利用二阶行列式的展开式法则及函数平移的性质得到y=2sin(x+m-$\frac{π}{3}$)是奇函数,从而m-$\frac{π}{3}$=kπ,k∈Z,由此能求出m的最小值.
解答 解:∵函数f(x)=$|{\begin{array}{l}{sin2x}&{cos2x}\\{\sqrt{3}}&1\end{array}}|$=sin2x-$\sqrt{3}$cos2x=2sin(2x-$\frac{π}{3}$),
函数f(x)=$|{\begin{array}{l}{sin2x}&{cos2x}\\{\sqrt{3}}&1\end{array}}|$图象向左平移m(m>0)个单位后,所得图象对应的函数为奇函数,
∴y=2sin[2(x+m)-$\frac{π}{3}$]是奇函数,∴2m-$\frac{π}{3}$=kπ,k∈Z,
∵m>0,
∴m的最小值是$\frac{π}{6}$.
故选:B.
点评 本题考查实数的最小值的求法,是基础题,解题时要认真审题,注意二阶行列式的展开式法则及函数平移的性质及三角函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (0,2) | C. | (0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{14}{\;}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$或-$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com