·ÖÎö £¨¢ñ£©ÓÉÀëÐÄÂÊe=$\frac{\sqrt{2}}{2}$£¬¶ÌÖ᳤Ϊ2£®¿ÉµÃa£¬b£¬¼´¿Éд³ö·½³Ì£»
£¨¢ò£©¢Ùµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬²»·ÁÈ¡A£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬B£¨1£¬-$\frac{\sqrt{2}}{2}$£©£¬C£¨-1£¬-$\frac{\sqrt{2}}{2}$£©£¬²»·ûºÏÌâÒ⣮
¢Úµ±Ö±Ïß lбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$»¯¼òµÃ £¨2k2+1£©x2-4k2x+2k2-2=0£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃ|AB|=$\sqrt{£¨1{+k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$2\sqrt{2}\frac{{k}^{2}+1}{2{k}^{2}+1}$
µãOµ½Ö±Ïßkx-y-k=0µÄ¾àÀëd=$\frac{|k|}{\sqrt{{k}^{2}+1}}$£¬¡÷ABCÃæ»ýΪs=$\frac{1}{2}$|AB|¡Á2d=2$\sqrt{2}$¡Á$\frac{\sqrt{{k}^{4}+{k}^{2}}}{2{k}^{2}+1}$=$\frac{\sqrt{6}}{2}$£®k=¡À$\frac{\sqrt{2}}{2}$£¬¼´¿ÉµÃÖ±ÏßABµÄ·½³Ì
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ2b=2£¬¡àb=1£¬![]()
¡ß$\frac{c}{a}=\frac{\sqrt{2}}{1}$£¬a2=b2+c2£¬¡àa=$\sqrt{2}$£¬c=1£¬
¡àÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}=1$£®
£¨¢ò£©¢Ùµ±Ö±ÏßlбÂʲ»´æÔÚʱ£¬²»·ÁÈ¡A£¨1£¬$\frac{\sqrt{2}}{2}$£©£¬B£¨1£¬-$\frac{\sqrt{2}}{2}$£©£¬C£¨-1£¬-$\frac{\sqrt{2}}{2}$£©
¡à¡÷ABCÃæ»ýΪS=$\frac{1}{2}¡Á2¡Á\sqrt{2}$=$\sqrt{2}$£¬²»·ûºÏÌâÒ⣮
¢Úµ±Ö±Ïß lбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßAB£ºy=k£¨x-1£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$»¯¼òµÃ £¨2k2+1£©x2-4k2x+2k2-2=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{4{k}^{2}}{2{k}^{2}+1}$£¬${x}_{1}{x}_{2}=\frac{2{k}^{2}-2}{2{k}^{2}+1}$£®
¡à|AB|=$\sqrt{£¨1{+k}^{2}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$2\sqrt{2}\frac{{k}^{2}+1}{2{k}^{2}+1}$
¡ßµãOµ½Ö±Ïßkx-y-k=0µÄ¾àÀëd=$\frac{|k|}{\sqrt{{k}^{2}+1}}$£¬
ÓÖOÊÇÏß¶ÎACµÄÖе㣬¡àµãCµ½Ö±ÏßABµÄ¾àÀë2d=2¡Á$\frac{|k|}{\sqrt{{k}^{2}+1}}$
¡à¡÷ABCÃæ»ýΪs=$\frac{1}{2}$|AB|¡Á2d=2$\sqrt{2}$¡Á$\frac{\sqrt{{k}^{4}+{k}^{2}}}{2{k}^{2}+1}$=$\frac{\sqrt{6}}{2}$£®
¡à4k4+4k2-3=0£¬½âµÃ${k}^{2}=\frac{1}{2}$£¬k=¡À$\frac{\sqrt{2}}{2}$
¡àÖ±ÏßABµÄ·½³ÌΪy=$\frac{\sqrt{2}}{2}$£¨x-1£©»òy=-$\frac{\sqrt{2}}{2}£¨x-1£©$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÁ˵㵽ֱÏߵľàÀ빫ʽ¡¢Ãæ»ý¼ÆË㣬ÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {x|3¡Üx£¼7}£¬ | B£® | {x|2£¼x£¼10} | C£® | {x|x¡Ü2»òx¡Ý10} | D£® | {x|x£¼3»òx¡Ý7} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6 | B£® | 8 | C£® | 12 | D£® | 16 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [3£¬4£© | B£® | £¨-4£¬-3] | C£® | £¨1£¬3] | D£® | [-3£¬-1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com