精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣ax+ ,其中a>0.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)证明:(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2).

【答案】解:(Ⅰ)函数f(x)的定义域是(0,+∞), f′(x)= ,令h(x)=﹣ax2+x﹣a,
记△=1﹣4a2 , 当△≤0时,得a≥
若a≥ ,则﹣ax2+x﹣a≤0,f′(x)≤0,
此时函数f(x)在(0,+∞)递减,
当0<a< 时,由﹣ax2+x﹣a=0,解得:x1= ,x2=
显然x1>x2>0,故此时函数f(x)在( )递增,
在(0, )和( ,+∞)递减;
综上,0<a< 时,函数f(x)在( )递增,
在(0, )和( ,+∞)递减,
a≥ 时,函数f(x)在(0,+∞)递减;
(Ⅱ)证明:令a= ,由(Ⅰ)中讨论可得函数f(x)在区间(0,+∞)递减,
又f(1)=0,从而当x∈(1,+∞)时,有f(x)<0,即lnx< x﹣
令x=1+ (n≥2),
则ln(1+ )< (1+ )﹣ =
= + )< = ),
从而:ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+
(1﹣ + + +…+ + +
= (1+ )< (1+ )=
则有ln(1+ )+ln(1+ )+ln(1+ )+…+ln(1+ )<
可得(1+ )(1+ )(1+ )…(1+ )<e (n∈N* , n≥2)
【解析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)求出lnx< x﹣ ,令x=1+ (n≥2),得到ln(1+ )< ),累加即可证明结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )
A. ,y R,若x+y 0,则x 且y
B.a R,“ ”是“a>1”的必要不充分条件
C.命题“ x R,使得 ”的否定是“ R,都有
D.“若 ,则a<b”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别是a,b,c,且a、b、c成等比数列,c= bsinC﹣ccosB.
(Ⅰ)求B的大小;
(Ⅱ)若b=2 ,求△ABC的周长和面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是东西方向的公路北侧的边缘线,某公司准备在上的一点的正北方向的处建一仓库,并在公路同侧建造一个正方形无顶中转站(其中边上),现从仓库和中转站分别修两条道路,已知,且,设

(1)求关于的函数解析式

(2)如果中转站四周围墙(即正方形周长)造价为万元,两条道路造价为万元,问:取何值时,该公司建中转围墙和两条道路总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,点B是椭圆C的上顶点,点Q在椭圆C上(异于B点).
(Ⅰ)若椭圆V过点(﹣ ),求椭圆C的方程;
(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别为棱的中点.已知.

求证:(1)直线PA平面DEF;

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍”的五面体(如图)面 为矩形,棱 .若此几何体中, 都是边长为 的等边三角形,则此几何体的表面积为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x﹣4|.
(Ⅰ)记函数g(x)=f(x)+|x+2|﹣4,在下列坐标系中作出函数g(x)的图象,并根据图象求出函数g(x)的最小值;
(Ⅱ)记不等式f(x)<5的解集为M,若p,q∈M,且|p+q+pq|<λ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱 中, 分别是 的中点, ,则BM与AN所成角的余弦值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案