精英家教网 > 高中数学 > 题目详情
18.计算:${∫}_{-3}^{3}$(x3cosx)dx=0.

分析 由于被积函数是奇函数,且积分区间关于原点对称,可由微积分基本定理得答案.

解答 解:∵y=x3cosx为减函数,
∴其图象关于原点中心对称,
由积分区间为[-3,3],关于原点对称,
由微积分基本定理得:${∫}_{-3}^{3}$(x3cosx)dx=0.
故答案为:0.

点评 本题考查了定积分,考查了微积分基本定理的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在抛物线y2=2x上求一点P,使其到直线l:x+y+4=0的距离最小,并求最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.对定义域分别是Df、Dg的函数y=f(x)和y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{\frac{f(x)}{g(x)},x∈{D}_{f}且x∈{D}_{g}}\\{f(x),x∈{D}_{f}且x∉{D}_{g}}\\{g(x),x∉{D}_{f}且x∈{D}_{g}}\end{array}\right.$,若f(x)=$\frac{1}{{e}^{x}+{e}^{-x}}$,g(x)=$\frac{1}{{e}^{x}-{e}^{-x}}$,则h(x)的值域是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知P(m,n)是函授f(x)=ex-1图象上任一于点
(Ⅰ)若点P关于直线y=x-1的对称点为Q(x,y),求Q点坐标满足的函数关系式
(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,当点M在函数y=h(x)图象上时,公式变为$\frac{|A{x}_{0}+Bh({x}_{0})+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,请参考该公式求出函数ω(s,t)=|s-ex-1-1|+|t-ln(t-1)|,(s∈R,t>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)的极值点为m、n,满足|m-n|≤a,且|f(m)-f(n)|≤a,则称函数f(x)为“密集a函数”,设f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1(a≠0)是“密集3函数”,则a的取值范围是$[-\frac{2}{3},0)∪(0,\frac{2}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(-$\frac{1}{2},\frac{1}{2}$),在抛物线C:y2=2px(p>0)的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若$\overrightarrow{OM}•\overrightarrow{ON}$=3,则点A到动直线MN的最大距离为$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点F1作一条渐近线的垂线,垂足为A,与另一条渐近线交于点B,若A恰好是F1B的中点,则双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l与抛物线y2=2x有且仅有一个公共点A,直线l又与圆(x+2)2+y2=t(t>0)相切于点B,且A、B两点不重合.
(1)当t=4时,求直线l的方程;
(2)是否存在实数t,使A、B两点的横坐标之差等于4?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(a+1)sinωx+acosωx(a>0,ω>0)的最小正周期为2π,最大值为5.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)-$\sqrt{15}$在x∈(0,π)上有两个不同的零点α、β,求cos(α+β)的值.

查看答案和解析>>

同步练习册答案