精英家教网 > 高中数学 > 题目详情
若将函数y=sin2x的图象向右平移φ(φ>0)个单位,得到的图象关于直线x=
π
6
对称,则φ的最小值为
 
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据函数y=Asin(ωx+φ)的图象变换规律可得所得函数的解析式为y=sin2(x-φ),再由题意结合正弦函数的对称性可得2×
π
6
-2φ=kπ+
π
2
,k∈z,由此求得φ的最小值.
解答: 解:将函数y=sin2x的图象向右平移φ(φ>0)个单位,可得函数y=sin2(x-φ)的图象,
再根据得到的图象关于直线x=
π
6
对称,可得2×
π
6
-2φ=kπ+
π
2
,k∈z,
π
6
-φ=
2
+
π
4
,k∈z,即 φ=-
2
-
π
12
,k∈z,
再根据φ>0,可得φ的最小值为
12

故答案为:
12
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的对称性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax-2-lnx(a∈R).
(Ⅰ)若f(x)在点(e,f(e))处的切线为x-ey-2e=0,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x>0时,求证:f(x)-ax+ex>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的各顶点都在同一球面上,若四面体A-B1CD1的表面积为8
3
,则球的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=
x2
4
-3lnx的一条切线的斜率为
1
2
,则切线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义两个实数间的一种新运算“*”:x*y=lg(10x+10y),x,y∈R 当x*x=y时,记x=*
y
对于任意实数a,b,c,给出如下结论:
①(a*b)*c=a*(b*c);  
②(a*b)+c=(a+c)*(b+c);
③a*b=b*a;
④*
a*b
a+b
2

其中正确的结论是
 
.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(x-
1
x
)6
的展开式的中间一项是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{cn},如果存在各项均为正整数的等差数列{an}和各项均为正整数的等比数列{bn},使得cn=an+bn,则称数列{cn}为“DQ数列”.已知数列{en}是“DQ数列”,其前5项分别是:3,6,11,20,37,则en=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的导函数f′(x)=1-cosx,x∈(-1,1).满足f(1-x2)+f(1-x)<0,则实数x的取值范围是(  )
A、(0,1)
B、(1,
2
C、(-2,-
2
D、(-
2
,1)∪(1,
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足0<x≤2,0<y≤2,且使关于t的方程t2+2xt+y=0与t2+2yt+x=0均有实数根,则2x+y有(  )
A、最小值2
B、最小值3
C、最大值2+2
2
D、最大值4+
2

查看答案和解析>>

同步练习册答案