精英家教网 > 高中数学 > 题目详情
16.执行如图所示的程序框图后,输出的结果为(  )
A.$\frac{7}{8}$B.$\frac{9}{10}$C.$\frac{8}{9}$D.$\frac{10}{11}$

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:由已知中的程序框图可知:
该程序的功能是利用循环结构计算并输出变量S=$\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{8×9}$=$\frac{8}{9}$,
故选:C.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若1oga$\frac{2}{3}$<0,则实数a的取值范围是(  )
A.($\frac{2}{3}$,1)B.($\frac{2}{3}$,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0),若斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为4,则该抛物线的准线方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列函数中,同时满足条件①f(-x)=-f(x);②若x1<x2有f(x1)<f(x2)的为(  )
A.y=x+1B.y=2cosxC.y=-$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x3+ax2+bx(a,b∈R)的图象与直线y=0在原点处相切,函数f(x)有极小值-$\frac{4}{27}$,则a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin($θ+\frac{π}{4}$)=2$\sqrt{2}$.
(Ⅰ)求曲线C和直线l在该直角坐标系下的普通方程;
(Ⅱ)动点A在曲线C上,动点B在直线l上,定点P的坐标为(-2,2),求|PB|+|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(-2,1),y2=-4x的焦点是F,P是y2=-4x上的点,为使|PA|+|PF|取得最小值,P点的坐标是$(-\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,与函数y=2x表示同一函数的是(  )
A.y=$\frac{2{x}^{2}}{x}$B.y=$\sqrt{4{x}^{2}}$C.y=($\sqrt{2x}$)2D.y=log24x

查看答案和解析>>

同步练习册答案