精英家教网 > 高中数学 > 题目详情
20.将函数y=sin2x的图象向左平移φ(φ>0)个单位后与函数$y=cos(2x-\frac{π}{3})$的图象重合,则φ的最小值为$\frac{π}{12}$.

分析 利用诱导公式,y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin2x=cos(2x-$\frac{π}{2}$)的图象向左平移φ(φ>0)个单位后,
可得y=cos(2x+2φ-$\frac{π}{2}$)的图象.
由于所得图象函数$y=cos(2x-\frac{π}{3})$的图象重合,2φ-$\frac{π}{2}$=2kπ-$\frac{π}{3}$,k∈Z,
即φ=kπ+$\frac{π}{12}$,k∈Z,则φ的最小值为$\frac{π}{12}$,
故答案为:$\frac{π}{12}$.

点评 本题主要考查诱导公式,y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知等比数列{an}中,各项都是正数,且3a1,$\frac{1}{2}$a3,2a2成等差数列,则等比数列{an}公比q等于(  )
A.3B.9C.27D.81

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在几何体A1B1D1-ABCD中,四边形A1B1BA与A1D1DA均为直角梯形,且AA1⊥底面ABCD,四边形ABCD为正方形,AB=2A1D1=2A1B1=4,AA1=4,P为DD1的中点.
(Ⅰ)求证:AB1⊥PC;
(Ⅱ)求平面B1CD1与平面PBC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)曲线C:$\frac{x^2}{4-k}-\frac{y^2}{1-k}=1$表示焦点在x轴上的椭圆,则k的范围;
(2)求以F1(-2,0),F2(2,0)为焦点,且过点$M(\sqrt{6},2)$的椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数既是奇函数又在定义域上单调递增的是(  )
A.$f(x)=\frac{{{x^2}-2x}}{x-2}$B.f(x)=x-$\frac{1}{x}$C.f(x)=2x-2-xD.f(x)=x|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.双曲线4y2-25x2=100的焦点坐标是(  )
A.(-5,0),(5,0)B.(0,-5),(0,5)C.$(-\sqrt{29},0)$,$(\sqrt{29},0)$D.$(0,-\sqrt{29})$,$(0,\sqrt{29})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,∠C=90°,AB=4,AC=2,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB},则\overrightarrow{CD}•\overrightarrow{CB}$=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在产品质量检验时,常从产品中抽出一部分进行检查.现在从98件正品和2件次品共100件产品中,任意抽出3件检查.
(1)共有多少种不同的抽法?
(2)恰好有一件是次品的抽法有多少种?
(3)至少有一件是次品的抽法有多少种?
(4)恰好有一件是次品,再把抽出的3件产品放在展台上,排成一排进行对比展览,共有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b<0)的离心率为$\sqrt{3}$,焦点到渐近线的距离为2.
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.

查看答案和解析>>

同步练习册答案