精英家教网 > 高中数学 > 题目详情
15.下列函数既是奇函数又在定义域上单调递增的是(  )
A.$f(x)=\frac{{{x^2}-2x}}{x-2}$B.f(x)=x-$\frac{1}{x}$C.f(x)=2x-2-xD.f(x)=x|sinx|

分析 根据函数单调性和奇偶性的定义判断即可.

解答 解:对于选项A:f(x)=x,(x≠2),不是奇函数;
选项B:f(x)为奇函数,分别在(-∞,0)和(0,+∞)上单调递增;
选项D:f(x)为奇函数,因为f(0)=f(π),所以在R上不是单调递增;
故选:C.

点评 本题考查了函数的单调性和奇偶性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图所示的程序框图中,输出的B是(  )
A.$\sqrt{3}$B.0C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在斜三梭柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)求sinAcosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知某企业的近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:

(1)试问这3年的前7个月中哪个月的月平均利润较高?
(2)通过计算判断这3年的前7个月的总利润的发展趋势;
(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估测第3年8月份的利润.
月份x1234
利润y(单位:百万元)4466
相关公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.将函数y=sin2x的图象向左平移φ(φ>0)个单位后与函数$y=cos(2x-\frac{π}{3})$的图象重合,则φ的最小值为$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-1),若$\overrightarrow{b}$⊥($\overrightarrow{a}$+2$\overrightarrow{b}$),则实数m等于(  )
A.2B.4C.6D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={x|x2≥x},N={x|log${\;}_{\frac{1}{2}}$(x+1)>0},则有(  )
A.N⊆MB.M⊆∁RNC.M∩N=∅D.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在△ABC中∠A、∠B均为锐角,sinA=$\frac{\sqrt{5}}{5}$,sinB=$\frac{\sqrt{10}}{10}$,
(1)求cos(A+B)
(2)求∠C的度数.

查看答案和解析>>

同步练习册答案