精英家教网 > 高中数学 > 题目详情
7.设向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-1),若$\overrightarrow{b}$⊥($\overrightarrow{a}$+2$\overrightarrow{b}$),则实数m等于(  )
A.2B.4C.6D.-3

分析 运用向量的加减运算和数量积的坐标表示,解方程即可得到m的值.

解答 解:向量$\overrightarrow{a}$=(2,m),$\overrightarrow{b}$=(1,-1),
若$\overrightarrow{b}$⊥($\overrightarrow{a}$+2$\overrightarrow{b}$),则$\overrightarrow{b}$•($\overrightarrow{a}$+2$\overrightarrow{b}$)=0,
即为(1,-1)•(4,m-2)=0,
即有4-m+2=0,解得m=6.
故选:C.

点评 本题考查向量的加减运算和向量数量积的坐标表示,考查方程思想,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.如图,菱形ABCD的边长为12,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=6$\sqrt{2}$.

(1)求证:OD⊥平面ABC;
(2)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.关于函数$f(x)=\sqrt{3}{cos^2}x+2sinxcosx-\sqrt{3}{sin^2}x$,有如下问题:
①$x=\frac{π}{12}$是f(x)的图象的一条对称轴;
②$?x∈R,f({\frac{π}{3}+x})=-f({\frac{π}{3}-x})$;
③将f(x)的图象向右平移$\frac{π}{3}$个单位,可得到奇函数的图象;
④?x1,x2∈R,|f(x1)-f(x2)|≥4.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数既是奇函数又在定义域上单调递增的是(  )
A.$f(x)=\frac{{{x^2}-2x}}{x-2}$B.f(x)=x-$\frac{1}{x}$C.f(x)=2x-2-xD.f(x)=x|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,AB为⊙O的直径,AB=2,OC是⊙O的半径,OC⊥AB,点D在$\widehat{AC}$上,$\widehat{AD}$=2$\widehat{CD}$,点P是OC上一动点,则PA+PD的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,∠C=90°,AB=4,AC=2,若$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB},则\overrightarrow{CD}•\overrightarrow{CB}$=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标平面中,△ABC的两个顶点为B(0,-1),C(0,1),平面内两点P、Q同时满足:
①$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$;②|$\overrightarrow{QA}$|=|$\overrightarrow{QB}$|=|$\overrightarrow{QC}$|;③$\overrightarrow{PQ}$∥$\overrightarrow{BC}$.
(1)求顶点A的轨迹E的方程;
(2)过点F($\sqrt{2}$,0)作两条互相垂直的直线l1,l2,直线l1,l2与点A的轨迹E的相交弦分别为A1B1,A2B2,设弦A1B1,A2B2的中点分别为M,N.
(ⅰ)求四边形A1A2B1B2的面积S的最小值;
(ⅱ)试问:直线MN是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,阴影部分的面积为(  )
A.9B.$\frac{9}{2}$C.$\frac{13}{6}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U={x|x≤9,x∈N+},集合A={1,2,3},B={3,4,5,6},则∁U(A∪B)=(  )
A.{3}B.{7,8}C.{7,8,9}D.{1,2,3,4,5,6}

查看答案和解析>>

同步练习册答案