精英家教网 > 高中数学 > 题目详情
已知圆O:x2+y2=25
①过点P(1,-2
6
)作圆O的切线,求切线方程;
②若点M(x,y)是圆O上任意一点,求
3
x+y的最大值.
考点:圆方程的综合应用,圆的切线方程
专题:综合题,直线与圆
分析:①P(1,-2
6
)满足圆O:x2+y2=25,即可求出过点P(1,-2
6
)的圆O的切线方程;
②设x=5cosθ,y=5sinθ,则
3
x+y=5
3
cosθ+5sinθ=10sin(θ+
π
6
),即可求
3
x+y的最大值.
解答: 解:①P(1,-2
6
)满足圆O:x2+y2=25,
∴过点P(1,-2
6
)的圆O的切线方程为x-2
6
y=25;
②设x=5cosθ,y=5sinθ,则
3
x+y=5
3
cosθ+5sinθ=10sin(θ+
π
6
),
3
x+y的最大值为10.
点评:本题考查圆的切线方程,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(1-x)2011=a0+a1x+…+a2011x2011(x∈R),则a1+…+a2011=(  )
A、2B、0C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x-
π
6
)图象向左平移
π
4
个单位,所得函数图象的一条对称轴的方程是(  )
A、x=
π
12
B、x=
π
6
C、x=
π
3
D、x=-
π
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x,g(x)=m-2lnx.
(Ⅰ)求f(x)在x=2处的切线方程;
(Ⅱ)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且仅有三个不同的交点?若存在,求出m的值或范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x2-x-1)e-x
(1)求f(x)的单调区间和极值;
(2)关于x的方程f(x)=a在区间[-1,4]上有两个根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:
x=3cosθ
y=3sinθ
,直线l:ρ(2cosθ-3sinθ)=13.
(1)将直线l的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+alnx(x>0)
(1)a=-2时,求函数的单调区间;
(2)a=-8时,求函数在[1,e]上的最小值及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1的离心率与双曲线y2-
x2
2
=1的离心率互为倒数,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为
F
 
1
,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)设第(2)问中的C2与x轴交于点Q,不同的两点R,S在C2上,且满足
QR
RS
=0
,求|
QS
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足递推关系式an+1=2an+2n-1(n∈N*),且{
an
2n
}为等差数列,则λ的值是
 

查看答案和解析>>

同步练习册答案