精英家教网 > 高中数学 > 题目详情
直线m与平面α平行的充要条件是(  )
A、直线m与平面α没有公共点
B、直线m与平面α内的一条直线平行
C、直线m与平面α内的无数条直线平行
D、直线m与平面α内的任意一条直线平行
考点:直线与平面平行的性质
专题:证明题,空间位置关系与距离
分析:根据直线与平面平行的定义,由于定义是充要条件得到选项.
解答: 解:根据直线与平面平行的定义:直线与平面没有公共点时,直线与平面平行
所以“直线α与平面M没有公共点”是“直线α与平面M平行”的充要条件
故选:A.
点评:直线与平面的位置关系是利用直线与平面交点的个数来定义的,而定义是充要条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知lg2=a,lg3=b,求下列各式的值:
(1)lg6;(2)log34;
(3)log212;(4)lg
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

为了研究男羽毛球运动员的身高x(单位:cm)与体重y(单位:kg)的关系,通过随机抽样的方法抽取5名运动员,测得他们的身高和体重的关系如下表:
身高(x)172174176178180
体重(y)7473767577
从这5人中随机抽取2人,将他们的体重作为一个样本,则该样本的平均数与总体中体重的平均数之差的绝对值不超过1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为2的正方形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使得平面A′DE⊥平面BCDE,F为线段A′C的中点.

(Ⅰ)求证:BF∥平面A′DE;
(Ⅱ)求直线A′B与平面A′DE所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二阶矩阵M对应的变换将向量
1
-1
-2
1
分别变换成向量
3
-2
-2
-1
,直线l在M的变换下所得到的直线l′的方程是2x-y-1=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的两个顶点A、B∈平面α,下面四项:①△ABC的内心;②△ABC的外心;③△ABC的垂心;④△ABC的重心.其中因其在α内可判定C在α内的是(  )
A、②③B、②④C、①③D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=
2
2
BC,D、E、F分别是BC、BB1、CC1的中点.
(1)求证A1E∥平面ADF;
(2)若AB=1,求C到平面ADF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(x-1)lnx的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A′B′C′D′中,A′C′和B′D′相交于O′,求证:DO′∥平面ACB′.

查看答案和解析>>

同步练习册答案