精英家教网 > 高中数学 > 题目详情
13.四棱锥P-ABCD的三视图如图所示,则该四棱锥的表面积(  )
A.$\sqrt{5}$+15B.2$\sqrt{5}$+20C.15D.2$\sqrt{5}$+12

分析 由三视图得几何体是四棱锥并画出直观图,由三视图判断出线面的位置关系,并求出几何体的高和侧面的高,分别求出各个侧面和底面的面积,即可得到答案.

解答 解:由三视图得几何体是四棱锥P-ABCD,如图所示:
且PE⊥平面ABCD,底面ABCD是矩形,AB=4、AD=2,
面PDC是等腰三角形,PD=PC=3,
则△PDC的高为$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
所以△PDC的面积为:$\frac{1}{2}$×4×$\sqrt{5}$=2$\sqrt{5}$,
因为PE⊥平面ABCD,所以PE⊥BC,
又CB⊥CD,PE∩CD=E,所以BC⊥面PDC,
即BC⊥PC,同理可证AD⊥PD,
则两个侧面△PAD、△PBC的面积都为:$\frac{1}{2}$×2×3=3,
侧面△PAB的面积为:$\frac{1}{2}$×4×$\sqrt{(\sqrt{5})^{2}+{2}^{2}}$=6,且底面ABCD的面积为:4×2=8,
所以四棱锥P-ABCD的表面积S=2$\sqrt{5}$+2×3+6+8=20+2$\sqrt{5}$,
故选:B.

点评 本题考查由三视图求几何体的表面积,由三视图正确复原几何体、判断出几何体的结构特征是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.解关于x的不等式 $x-\frac{1}{x}$≥a(x-1).(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.经过点P(6,5),Q(2,3)的直线的斜率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$\overrightarrow{a}$与$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,<$\overrightarrow{a}$,$\overrightarrow{b}$>=60°,则$\overrightarrow{a}$•$\overrightarrow{a}$+$\overrightarrow{a}$•$\overrightarrow{b}$等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1+$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,圆C1:(x+$\sqrt{3}$)2+y2=4,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),并以O为极点,x轴正半轴建立极坐标系.
(1)写出圆C1的圆心C1的直角坐标,并将C2化为极坐标方程;
(2)若直线C3的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),C2与C3相交于A,B两点,求△ABC1的面积(C1为圆C1的圆心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xoy中,以O为极点,x轴正半轴为极轴建立极坐标系.曲线C的极坐标方程为ρcos(θ-$\frac{π}{3}$)=1,M,N分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求M,N的极坐标;
(2)设MN的中点为P,求直线OP的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.以直角坐标系的原点为极点,x轴非负半轴为极轴建立极坐标系,在两种坐标系中取相同的单位长度,已知直线l的方程为$ρcos(θ+\frac{π}{4})=\frac{{\sqrt{2}}}{2}$,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.$(α为参数),点M是曲线C上的一动点.
(1)求线段OM的中点P的轨迹C'的直角坐标方程;
(2)求曲线C'上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.观察正切曲线,满足条件tanx>1的x的取值范围是($\frac{π}{4}+kπ$,$\frac{π}{2}+kπ$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在直三棱柱ABC-A1B1C1中,D,E分别为棱A1A,C1C的中点,AC⊥BE,点F在棱AB上,且AB=4AF.
(1)求证:BC⊥C1D;
(2)试在线段BE上确定一点M,使得C1D∥平面BFM,并给出证明.

查看答案和解析>>

同步练习册答案