精英家教网 > 高中数学 > 题目详情
2.如图,平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F.已知AB=2cm,DE=4cm,EF=3cm,则AC的长为$\frac{7}{2}$cm.

分析 推导出AD∥EF∥CF,从而$\frac{AB}{BC}=\frac{DE}{EF}$,由此能求出AC.

解答 解:∵平面α∥平面β∥平面γ,两条直线a,b分别与平面α,β,γ相交于点A,B,C和点D,E,F,
∴AD∥EF∥CF,
∴$\frac{AB}{BC}=\frac{DE}{EF}$,
∵AB=2cm,DE=4cm,EF=3cm,
∴$\frac{3}{BC}=\frac{4}{3}$,解得BC=$\frac{3}{2}$cm,
∴AC=AB+BC=2+$\frac{3}{2}$=$\frac{7}{2}$(cm).
故答案为:$\frac{7}{2}$.

点评 本题考查线段长的求法,是基础题,解题时要认真审题,注意面面平行的性质定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若一个几何体各个顶点或其外轮廓曲线都在某个球的球面上,那么称这个几何体内接于该球,已知球的体积为$\frac{32π}{3}$,那么下列可以内接于该球的几何体为(  )
A.底面半径为1,且体积为$\frac{4π}{3}$的圆锥B.底面积为1,高为$\sqrt{14}$的正四棱柱
C.棱长为3的正四面体D.棱长为3的正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知定义域为R的奇函数f(x)满足f(log2x)=$\frac{-x+a}{x+1}$.
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(3t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}中,a1=2,an+1=an+2n(n≥2),则a10=92.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2+bx+c,若f(-3)=f(1),f(0)=-3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ) 若函数g(x)=$\left\{\begin{array}{l}{{x}^{2}+bx+c,x≤0}\\{-3-x,x>0}\end{array}\right.$   画出函数g(x)图象;
(Ⅱ)求函数g(x)在[-3,1]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=alog2x+blog3x+2,且f($\frac{1}{2010}$)=4,则f(2010)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)(log2125+log425+log85)(log52+log254+log1258);
(2)($\root{3}{25}-\sqrt{125}$)÷$\root{4}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若平面内有n(n≥4)个点,满足任意三点都不共线,且任意两点构成的向量与其余任意两点构成的向量的数量积为0,则n的最大值为(  )
A.3B.4C.5D.不存在

查看答案和解析>>

同步练习册答案