精英家教网 > 高中数学 > 题目详情
某几何体的三视图如图所示,则该几何体的体积是(  ) 
A、16π-16
B、14π-16
C、16π
D、18π-16
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图可知该几何体是一个底面半径为2,高为4的圆柱中间挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,即可得出.
解答: 解:由三视图可知该几何体是一个底面半径为2,高为4的圆柱中间挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,
所以其体积为π×22×4-22×4=16π-16.
故选:A.
点评:本题主要考查空间几何体的三视图及体积的求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=3,AB=2,BC=
3
,则二面角P-BD-A的正切值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=3sin(2x-
π
6
)的图象向右平移
π
4
个单位长度,所得图象对应的函数(  )
A、在区间[
π
12
12
]上单调递减
B、在区间[
π
12
12
]上单调递增
C、在区间[-
π
6
π
3
]上单调递减
D、在区间[-
π
6
π
3
]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=
1
3
x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是(  )
A、-1<b<2
B、-1≤b≤2
C、b<-1或b>2
D、b≤-2或b≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

设m∈R,在平面直角坐标系中,已知向量
a
=(mx,y+1),向量
b
=(x,y-1),
a
b
,动点M(x,y)的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)当m=
1
4
时,轨迹E与直线y=x-1交于A、B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=x3,求曲线在点P(1,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(1,2),
b
=(2,1).
(1)求向量
a
在向量
b
方向上的投影.
(2)若(m
a
+n
b
)⊥(
a
-
b
)(m,n∈R),求m2+n2+2m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

217与155的最大公约数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当0≤x≤2时,函数y=4x+2×2x+1+1的最小值为
 

查看答案和解析>>

同步练习册答案