精英家教网 > 高中数学 > 题目详情
20.已知$\overrightarrow a$、$\overrightarrow{b}$是两个不共线的非零向量,若|$\overrightarrow a$|=|$\overrightarrow b$|=1且$\overrightarrow a$与$\overrightarrow b$夹角为120°,求|$\overrightarrow a$-$\overrightarrow b$|的值?

分析 由$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}$,展开后代入数量积公式求得答案.

解答 解:∵|$\overrightarrow a$|=|$\overrightarrow b$|=1且$\overrightarrow a$与$\overrightarrow b$夹角为120°,
∴$|\overrightarrow{a}-\overrightarrow{b}{|}^{2}=(\overrightarrow{a}-\overrightarrow{b})^{2}=|\overrightarrow{a}{|}^{2}-2\overrightarrow{a}•\overrightarrow{b}+|\overrightarrow{b}{|}^{2}$
=1-2$|\overrightarrow{a}||\overrightarrow{b}|cos120°+1$=$2-2×1×1×(-\frac{1}{2})=3$,
∴$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{3}$.

点评 本题考查平面向量的数量积运算,考查向量模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.给出下列结论:
①若$\overrightarrow{AD}$=$\overrightarrow{BC}$,则ABCD是平行四边形;
②cos$\frac{2}{7}$π<sin$\frac{5}{7}$π<tan$\frac{2}{7}$π;
③若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$;
④若$\frac{\overrightarrow a}{{|{\overrightarrow a}|}}$=$\frac{\overrightarrow b}{{|{\overrightarrow b}|}}$,则$\overrightarrow a$=$\overrightarrow b$.
则以上正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.α为第三象限角,cos2α=-$\frac{3}{5}$,则sin2α=$\frac{4}{5}$,tan($\frac{π}{4}$+2α)=$-\frac{1}{7}$,在以sin2α为首项,tan($\frac{π}{4}$+2α)为公差的等差数列{an}中,其前n项和达到最大时n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知M为不等式组$\left\{\begin{array}{l}{y≤{x}^{2}}\\{1≤x≤2}\\{y≥0}\end{array}\right.$表示的平面区域,直线l:y=2x+a,当a从-2连续变化到0时,区域M被直线扫过的面积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆与两平行线x+3y-5=0,x+3y-3=0相切,圆心在直线2x+y+1=0,则这个圆的方程为${({x+\frac{7}{5}})^2}+{({y-\frac{9}{5}})^2}=\frac{1}{10}$ (化标准式).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数z的共轭复数是(  )
A.2+iB.2-iC.1+2iD.1+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知An4=24Cn6,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,则n=10,a1+a2+a3+…+an=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.实数m分别取什么数值时,复数Z=(m2+2m-3)+(m2-m-2)i满足:
(1)Z>0;     
 (2)对应的点在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求y关于x的线性回归方程.
可能用到公式:
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-y)}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

同步练习册答案