精英家教网 > 高中数学 > 题目详情
6.在△ABC中,已知AB=$\frac{4\sqrt{6}}{3}$,cosB=$\frac{\sqrt{6}}{6}$,AC边上的中线BD=$\sqrt{5}$,求边长BC的值.

分析 延长BD至E,使得DE=BD,连接CE,△BCE中,由余弦定理建立方程,即可求边长BC的值.

解答 解:延长BD至E,使得DE=BD,连接CE,则cos∠BCE=-$\frac{\sqrt{6}}{6}$,CE=$\frac{4\sqrt{6}}{3}$,BE=2$\sqrt{5}$,
△BCE中,由余弦定理可得20=($\frac{4\sqrt{6}}{3}$)2+BC2-2×$\frac{4\sqrt{6}}{3}$×BC×(-$\frac{\sqrt{6}}{6}$),
∴BC2+$\frac{8}{3}$BC-$\frac{28}{3}$=0,
∴BC=2(负数舍去).

点评 本题考查余弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知两定点A(-1,0),B(1,0),若直线l上存在点M,使得|MA|+|MB|=3,则称直线l为“M型直线”,给出下列直线:①x=2;②y=x+3;③y=-2x-1;④y=1;⑤y=2x+3.其中是“M型直线”的条数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}为递增数列,且P(a2,14),Q(a4,14)都在y=x+$\frac{45}{x}$的图象上.
(1)求数列{an}的通项公式和前n项和为Sn
(2)设bn=$\frac{(-1)^{n}{a}_{n}}{n(n+1)}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数y=f(x)的最小值为f(1)=-8,它的图象过点(0,-6),则x为何值时,
(1)y>0;
(2)y=0;
(3)y<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和为Sn,已知a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1,2,…,求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.画出不等式组$\left\{\begin{array}{l}-x+y-2≤0\\ x+y-4≤0\\ x-3y+3≤0\end{array}\right.$表示的平面区域,若z=x+y,求出z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设f(x)是定义在R上的偶函数,且当x≥0时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,0≤x<1}\\{lnx,x≥1}\end{array}\right.$,若对任意的x∈[a,a+1],不等式f(2x)≤f(x+a)恒成立,则实数a的最大值为(  )
A.-1B.-$\frac{2}{3}$C.-$\frac{1}{2}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.现甲、乙两警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为5千米/小时,乙的路线是ACB,速度为8千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.
(1)求t1与f(t1)的值;
(2)已知警员的对讲机的有效通话距离是3千米.当t1≤t≤1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?说明理由.

查看答案和解析>>

科目:高中数学 来源:2017届辽宁庄河市高三9月月考数学(文)试卷(解析版) 题型:选择题

已知双曲线)经过点,且离心率为,则它的焦距为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案