精英家教网 > 高中数学 > 题目详情
15.等比数列{an}中,公比q>0,Sn为其前n项和,S2=3,S4=15.
(1)求an
(2)记数列{Sn}的前n项和为Tn,求Tn

分析 (1)利用等比数列的通项公式与求和公式即可得出.
(2)利用等比数列的求和公式即可得出.

解答 解:(1)若q=1,则S4=2S2,与已知矛盾,∴q≠1,
∴$\left\{\begin{array}{l}{S_2}=\frac{{{a_1}(1-{q^2})}}{1-q}=3\\{S_4}=\frac{{{a_1}(1-{q^4})}}{1-q}=15\end{array}\right.$
又q>0,解得$\left\{\begin{array}{l}{a_1}=1\\ q=2\end{array}\right.$
∴${a_n}={2^{n-1}}$.
(2)由(1),可以求得${S_n}={2^n}-1$,
于是${T_n}={2^1}-1+{2^2}-1+…+{2^n}-1={2^1}+{2^2}+…+{2^n}-1-1-…-1$=$\frac{{2(1-{2^n})}}{1-2}-n={2^{n+1}}-n-2$.

点评 本题考查了等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.由半椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)与半椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)合成的曲线称作“果圆”,如图所示,其中a2=b2+c2,a>b>c>0.由右椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)的焦点F0和左椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x≤0)的焦点F1,F2确定的△F0F1F2叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x≥0)的离心率的取值范围为(  )
A.($\frac{1}{3}$,1)B.($\frac{\sqrt{2}}{3}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若不等式4x3-3x2+$\frac{1}{4}$≥k对任意的x∈[0,2]都成立,则实数k的最大值为(  )
A.$\frac{1}{2}$B.2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若长轴长为2a,短轴长为2b椭圆的面积为πab,则$\int_{-3}^3{\sqrt{1-\frac{x^2}{9}}}dx$=(  )
A.B.C.D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数f(x)=x3-3x+1在[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=alnx+bx2+3x的极值点为x1=1,x2=2,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不论b取何实数,直线y=kx+b与双曲线x2-2y2=1总有公共点,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,如表为抽样实验的结果
转速x(转/秒)24568
每小时生产有缺点的零件数y(件)1030605080
(1)已知y对x有线性相关关系,求回归直线方程;
(2)在实际生活中,预测每小时的产品中有缺点的零件为92个时,机器运转速度是多少.
(参考数值$\sum_{i=1}^5{{x_i}{y_i}}=1380$,$\sum_{i=1}^5{{x_i}^2}=145$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校现有高一、高二、高三三个年级共48个教学班,各年级学生数分别是1000,1050,1200,若按分层抽样从全校抽出65名学生,则高二年级比高一年级多抽出1名学生.

查看答案和解析>>

同步练习册答案