精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1(n∈N*),等差数列{bn}中,b2=5,且公差d=2.
(1)求数列{an},{bn}的通项公式;
(2)是否存在正整数n,使得a1b1+a2b2+…+anbn>60n?若存在,求n的最小值,若不存在,说明理由.
考点:数列的求和
专题:等差数列与等比数列
分析:(1)根据等差数列的通项公式,建立方程关系即可求数列{an},{bn}的通项公式;
(2求出数列{anbn}的前n项和Sn,即可解不等式.
解答: 解:(1)∵an+1=2Sn+1,
∴当n≥2时,an=2Sn-1+1两式相减得:an+1=3an(n≥2)
又a2=2a1+1=3=3a1,∴an+1=3an(n∈N*).
∴数列{an}是以1为首项,3为公比的等比数列,
∴an=3n-1
又b1=b2-d=5-2=3,∴bn=b1+(n-1)d=2n-1.
(2)anbn=(2n+1)•3n-1
Tn=3×1+5×3+7×32+…+(2n-1)×3n-2+(2n+1)×3n-1…①
则3Tn=3×3+5×32+7×33+…+(2n-1)×3n-1+(2n+1)×3n…②
①-②得:-2Tn=3×1+2(3+32+…+3n-1)-(2n+1)×3n
∴Tn=n×3n>60n,即3n>60,
∵33=27,34=81,
∴n的最小正整数为4.
点评:本题主要考查数列的通项公式和数列前n项和Sn的计算,以及数列与不等式的综合应用,利用错位相减法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等比数列{an}满足.a1=2,S2=3
(1)求{an}的通项公式;
(2)设数列{bn}满足a1=b1,an+bn-1=bn(n≥2),求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)在Rt△ABC中,∠BAC=
π
2
,AB=AC=6,设
BD
BC
(λ>0).
(1)当λ=2时,求
AB
AD
的值;
(2)若
AC
AD
=18,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a∈R,解关于x的不等式x2-x-a2+a>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=
1
2

(1)求证:面SAB⊥面SBC;
(2)求面SAD与面SDC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设f(x)=
x2(x≤0)
cosx-1(x>0)
试求
π
2
-1
f(x)dx.
(2)求函数y=
1
3
x与y=x-x2围成封闭图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2x+log2x,则在R上,函数f(x)零点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x+3在[-1,5]上的值域是
 
,单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前5项和S5=
 

查看答案和解析>>

同步练习册答案